Effect of c-di-GMP in the formation of aerobic granular sludge at low temperature
ZHI Li-ling1,2, WANG Yu-ying1,2, MA Xin-xin1,2, YI Xue-song3, WANG Shuo1,2, LI Ji1,2
1. School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China;
2. Water Treatment Technology and Technology in Jiangsu Province Materials Collaborative Innovation Center, Jiangnan University, Suzhou 215009, China;
3. College of Environment and Ecology, Hainan University, Haikou 570228, China
Along with the granulation process of floc sludge, signal molecules can lead to the variations of extracellular polymeric substances (EPS). In order to investigate the variations and effects of cyclic diguanylate (c-di-GMP) in the formation of aerobic granular sludge at low temperatures, the correlation analysis was carried out based on EPS, relative hydrophobicity (RH), zeta potential and community succession. The experimental results showed that EPS content increased from 48 to 139mg/g MLVSS during granulation, among which the significant increase was attributed to tightly bound-EPS (TB-EPS). The c-di-GMP content increased from 62 to 600μg/g MLVSS, which resulted in microbial succession and biofilm formation, and further improved the secretion of EPS and the formation of aerobic granular sludge. In addition, notable discrepancies were discovered in the microbial population, and the communities associated with the biosynthesis of c-di-GMP prevailed during the formation of aerobic granular sludge. The community succession was obvious and stable microbial community was eventually formed at low temperature, which was conducive to good performance of nitrogen and phosphorus removal.
支丽玲, 王玉莹, 马鑫欣, 衣雪松, 王硕, 李激. c-di-GMP在低温好氧颗粒污泥形成过程中的作用[J]. 中国环境科学, 2019, 39(4): 1560-1567.
ZHI Li-ling, WANG Yu-ying, MA Xin-xin, YI Xue-song, WANG Shuo, LI Ji. Effect of c-di-GMP in the formation of aerobic granular sludge at low temperature. CHINA ENVIRONMENTAL SCIENCECE, 2019, 39(4): 1560-1567.
Adav S S, Lee D J, Show K Y, et al. Aerobic granular sludge:Recent advances[J]. Biotechnology Advances, 2008,26(5):411-423.
[2]
张自杰,戴爱临.国内城市污水低温生物处理试验(下)[J]. 环境工程, 1984,(2):13-18. Zhang Z J, Dai A L. Low temperature biological treatment test of domestic urban wastewater (Part Ⅱ)[J]. Environmental Engineering, 1984,(2):13-18
[3]
Oppenheimer-Shaanan Y, Wexselblatt E, Katzhendler J, et al. C-di-AMP reports DNA integrity during sporulation in Bacillus subtilis[J]. Embo. Reports, 2011,12(6):594-601.
[4]
Kamegaya T, Kuroda K, Hayakawa Y. Identification of a Streptococcus pyogenes SF370 gene involved in production of c-di-AMP[J]. Nagoya Journal of Medical Science, 2011,73(1):49-57.
[5]
Russell M H, Bible A N, Fang X, et al. Integration of the second messenger c-di-GMP into the chemotactic signaling pathway[J]. American Society Microbiology, 2014,4(2):57-62.
[6]
Liang Z X. The expanding roles of c-di-GMP in the biosynthesis of exopolysac-charides and secondary metabolites[J]. Natural Product Reports, 2015,32(5):663-683.
[7]
Hengge, A Gründling, U Jenal, et al. Bacterial signal transduction by c-di-GMP and other nucleotide second messengers[J]. Journal of Bacteriology, 2015,198(1):2421-2423.
[8]
唐堂,王硕,蒋志坚,等.群感效应与信号分子在污泥颗粒化过程中的作用研究进展[J]. 应用与环境生物学报, 2016,22(4):718-724. Tang T, Wang S, Jiang Z J, et al. Research progress of group effect and signal molecule in sludge granulation process[J]. Journal of Applied and Environmental Biology, 2016,22(4):718-724
[9]
Christen M, Christen B, Folcher M, et al. Identification and characterization of a cyclic di-GMP-specific phosphodiesterase and its allosteric control by GTP[J]. Journal of Biological Chemistry, 2005,280(35):30829-30837.
[10]
Wan C, Zhang P, Lee D J, et al. Disintegration of aerobic granules:role of second messenger cyclic di-GMP.[J]. Bioresource Technology, 2013,146(10):330-335.
[11]
Angela M, Béatrice B, Mathieu S. Biologically induced phosphorus precipitation in aerobic granular sludge process[J]. Water Research, 2011,45(12):3776-3786.
[12]
唐堂,王硕,王玉莹,等.SBR不同沉降时间的污泥特性研究[J]. 中国给水排水, 2018,34(3):85-90. Tang T, Wang S, Wang Y Y, et al. Study on sludge characteristics of SBR with different settling time[J]. China Water Supply and Drainage, 2018,34(3):85-90.
[13]
金正宇,郗皓,苑泉,等.进水模式对强化脱氮好氧颗粒污泥培养的影响[J]. 中国环境科学, 2018,38(3):935-942. Jin Z Y, Xi H, Yuan Q, et al. Influence of influent mode on enhanced nitrogen and aerobic granular sludge culture[J]. China Environmental Science, 2018,38(3):935-942.
[14]
Liang Z, Li W, Yang S, et al. Extraction and structural characteristics of extracellular polymeric substances (EPS), pelletsin autotrophic nitrifying biofilm and activated sludge[J]. Chemosphere, 2010,81(5):626-632
[15]
程祯.好氧污泥强化造粒过程中EPS的分布及变化规律[D]. 西安:西安建筑科技大学, 2015. Cheng Z. The distribution and variation of EPS in aerobic sludge enhanced granulation process[D]. Xi'an:Xi'an University of Architecture and Technology, 2015.
[16]
衣雪松.聚偏氟乙烯改性膜处理油田三次采出水的抗污染特性与机制[D]. 哈尔滨:哈尔滨工业大学, 2012. Yi X S. Anti-pollution characteristics and mechanism of tertiary produced water treated by polyvinylidene fluoride modified membrane[D]. Harbin:Harbin Institute of Technology, 2012.
[17]
吴敏,崔秀云,苗茂栋.zeta电位与菌悬液絮凝活性[J]. 化工学报, 2008,59(9):2263-2269. Wu M, Cui X Y, Miao M. Zeta potential and flocculation activity of bacterial suspension[J]. CIESC Journal, 2008,59(9):2263-2269.
[18]
Bassam B J, Caetano-Anollés G, Gresshoff P M. Fast and sensitive silver staining of DNA in polyacrylamide gels[J]. Analytical Biochemistry, 1991,196(1):80-83.
[19]
Adav S S, Lee D J, Tay J H. Extracellular polymeric substances and structural stability of aerobic granule[J]. Water Research, 2008, 42(6):1644-1650.
[20]
侯爱月,李军,王昌稳,等.不同好氧颗粒污泥中微生物群落结构特点[J]. 中国环境科学, 2016,36(4):1136-1144. Hou A Y, Li J, Wang C W, et al. Characteristics of microbial community structure in different aerobic granular sludges[J]. China Environmental Science, 2016,36(4):1136-1144.
[21]
Wang L F, He D Q, Tong Z H, et al. Characterization of dewatering process of activated sludge assisted by cationic surfactants[J]. Biochemical Engineering Journal, 2014,91:174-178.
[22]
廖青,李小明,杨麒,等.好氧颗粒污泥的快速培养以及胞外多聚物对颗粒化的影响研究[J]. 工业用水与废水, 2008,39(4):13-19. Liao Q, Li X M, Yang W, et al. Study on the rapid culture of aerobic granular sludge and the effect of extracellular polymer on granulation[J]. Industrial Water & Wastewater, 2008,39(4):13-19.
[23]
Basudhar D, Ridnour L A. Biological signaling by small inorganic molecules[J]. Coordination Chemistry Reviews, 2015,306(2):708-712.
[24]
Paul, Koushik, Nieto, et al. The c-di-GMP binding protein ycgR controls flagellar motor direction and speed to affect chemotaxis by a "Backstop Brake" mechanism[J]. Molecular Cell, 2010,38(1):128-139.
[25]
Zhu L, Zhou J, Lv M, et al. Specific component comparison of extracellular polymeric substances (EPS) in flocs and granular sludge using EEM and SDS-PAGE[J]. Chemosphere, 2015,121(5):26-32.
[26]
罗远玲,杨朝晖,徐峥勇,等.亚硝化颗粒污泥对温度变化的响应特性研究[J]. 环境科学, 2012,33(2):511-517. Luo Y L, Yang Z H, XU Y Y, et al. Study on response characteristics of nitrosated granular sludge to temperature changes[J]. Environmental Science, 2012,33(2):511-517.
[27]
王然登.生物除磷体系中颗粒污泥的形成机理及其特性研究[D]. 哈尔滨:哈尔滨工业大学, 2011. Wang R D. Study on the formation mechanism and characteristics of granular sludge in biological phosphorus removal system[D]. Harbin:Harbin Institute of Technology, 2011.
[28]
Martínez-Hernández S, Vázquez-Rodríguez G A, Beltrán-Hernández R I, et al. Resistance and inactivation kinetics of bacterial strains isolated from the non-chlorinated and chlorinated effluents of a WWTP[J]. International Journal of Environmental Research & Public Health, 2013,10(8):3363-3383.
[29]
武秀文,贾亚婷,兰善红,等.不同碳源对低温好氧活性污泥系统微生物菌群和制浆中段废水COD去除效果的影响[J]. 造纸科学与技术, 2015,34(6):111-115. Wu X W, Jia Y T, Lan S H, et al. Effects of Different Carbon Sources on Microbial Flora of Low Temperature Aerobic Activated Sludge System and COD Removal in Pulping Middle Stage Wastewater[J]. Paper Science and Technology, 2015,34(6):111-115.
[30]
Aguayo P, González C, Barra R, et al. Herbicides induce change in metabolic and genetic diversity of bacterial community from a cold oligotrophic lake[J]. World Journal of Microbiology & Biotechnology, 2014,30(3):1101.
[31]
Liang B, Cheng H, Nostrand J D V, et al. Microbial community structure and function of Nitrobenzene reduction biocathode in response to carbon source switchover[J]. Water Research, 2014,54(1):137-148.
[32]
Chao L, Rakshe S, Leff M, et al. PdeB, a cyclic Di-GMP-specific phosphodiest-erase that regulates Shewanella oneidensis MR-1motility and biofilm formation[J]. Journal of Bacteriology, 2013, 195(17):3827-3833.
[33]
Wan C, Shen Y, Chen S, et al. Microstructural strength deterioration of aerobic granule sludge under organic loading swap.[J]. Bioresource Technology, 2016,221:671-676.
[34]
Pultz I S, Christen M, Kulasekara H D, et al. The response threshold of Salmonella PilZ domain proteins is determined by their binding affinities for c-di-GMP[J]. Molecular Microbiology, 2012,86(6):1424-1440.
[35]
卢佳思.固氮施氏假单胞菌环二鸟苷酸(c-di-GMP)代谢相关基因的功能鉴定[D]. 合肥:安徽农业大学, 2016. Lu J S. Functional identification of genes related to c-di-GMP metabolism of Pseudomonas aeruginosa[D]. Hefei:Anhui Agricultural University, 2016.
[36]
黄廷林,周娜,张海涵,等.3株贫营养好氧反硝化细菌的分离鉴定及反硝化特性[J]. 环境工程学报, 2014,8(12):5507-5513. Huang T L, Zhou N, Zhang H H, et al. Isolation, identification and denitrification characteristics of 3 oligotrophic aerobic denitrifying bacteria[J]. Journal of Environmental Engineering, 2014,8(12):5507-5513.
[37]
Van B P, Eardly B D. The aquatic budding bacterium Blastobacter denitrificans is a nitrogen-fixing symbiont of Aeschynomene indica.[J]. Applied & Environmental Microbiology, 2002,68(3):1132-1138.