College of Foresery Science and Technology, Lishui Vocational and Technical College, Lishui 323000, China; 2. Forestry College, Fujian Agriculture and Forestry University, Fuzhou 350002, China
Abstract:A self-designed biomass combustion system was used to measure the emission factors of grassland burning based on the MODIS image data of Inner Mongolia zone and the temporal and spatial patterns of pollutants emitted from burning of grassland from 2000 to 2017 were analyzed. The results showed that the average emission factors of CO2, CO, NOx, CxHy, PM2.5, TC, OC and EC from the burning of Phragmites communis, Setaria viridis, Pennisetum alopecuroides and Calamagrostis epigeiosare were 1402.6~1550.1, 140.3~253.8, 0.67~1.55, 21.5~93.7, 3.74~6.89, 1.66~3.06, 1.42~2.71, 0.23~0.44g/kg, respectively. Inner Mongolia grassland biomass density had uneven spatial and temporal distribution and the distribution of biomass density had gradually decreasing from northeast to southwest. The total biomass burnt was 8061.46kt, and the total amounts of the emitted CO2, CO, NOx, CxHy, PM2.5, TC, OC and EC were 11296.13 kt, 1609.79 kt, 10.80 kt, 408.96 kt, 44.50 kt, 20.06 kt, 17.23 kt and 2.83 kt, respectively. A total of 49,374 grassland fires had occurred, with the fire points and fire areas were unbalanced in time and space. The monthly variation exhibited a bi-modal distribution, the main-peak fire point (March) was significantly higher than the secondary-peak fire point (September), and the distribution of fire density and fire area had a gradually decreasing trend from northeast to southwest.
Leys B, Umbanhowar C, Marlon J R, et al. Global fire history of grassland biomes[J]. Ecology & Evolution, 2018. https://doi.org/10.1002/ece3.4394.
[2]
Leys B, Brewer S C, Mcconaghy S, et al. Fire history reconstruction in grassland ecosystems:amount of charcoal reflects local area burned[J]. Environmental Research Letters, 2015,10(11):114-129.
[3]
Allison R S, Johnston J M, Craig G, et al. Airborne optical and thermal remote sensing for wildfire detection and monitoring[J]. Sensors, 2016,16(8):1310-1324.
[4]
Conver J L, Falk D A, Yool S R, et al. Modeling Fire Pathways in Montane Grassland-forest Ecotones[J]. Fire Ecology, 2018,14(1).doi:10.4996/fireecology.140117031.
[5]
Weldemichael Y, Assefa G. Assessing the energy production and GHG (greenhouse gas) emissions mitigation potential of biomass resources for Alberta[J]. Journal of Cleaner Production, 2016,112(20):4257-4264.
[6]
Wang J, Xi F, Liu Z, et al. The spatiotemporal features of greenhouse gases emissions from biomass burning in China from 2000~2012[J]. Journal of Cleaner Production, 2018,181.https://doi.org/10.1016/j.jclepro. 2018.01.206.
[7]
Werf G R, Randerson J T, Giglio L, et al. Global fire emissions and the contribution of deforestation,savanna,forest,agricultural,and peat fires (1997~2009)[J]. Atmospheric Chemistry and Physics, 2010,10(23):11707-11735.
[8]
Zha S, Zhang S, Cheng T, et al. Agricultural fires and their potential impacts on regional air quality over China[J]. Aerosol Air Qual. Res. 2013,13:992-1001.
[9]
Zong Z, Wang X, Tian C, et al. Biomass burning contribution to regional PM2.5 during winter in the North China[J]. Atmospheric Chemistry and Physics, 2016,16:1-41.
[10]
Enkhjargal A, Burmaajav B. Impact of the ambient air PM2.5 on cardiovascular diseases of Ulaanbaatar residents[J]. 2015,8(4):35-41.
[11]
靳全锋,王文辉,马祥庆,等.福建省2000~2010年林火排放污染物时空动态变化[J]. 中国环境科学, 2017,37(2):476-485. Jin Q, Wang W, Ma X, et al. Temporal and spatial dynamics of pollutants emission from forest fires in Fujian during 2000~2010[J]. China Environmental Science, 2017,37(2):476-485.
[12]
Sonomdagva C, Batdelger B, Chuluunpurev B. Characteristics of PM10 and PM2.5 in the ambient air of Ulaanbaatar, Mongolia[J]. International Journal of Environmental Science & Development, 2016, 7(11):827-830.
[13]
靳全锋,马祥庆,王文辉,等.中国亚热带地区2000~2014年林火排放颗粒物时空动态变化[J]. 环境科学学报, 2017,37(6):2238-2247. Jin Q, Ma X, Wang W, et al. Temporal and spatial characteristics of particulate matter emission from forest fires in Subtropical China during 2000~2014[J]. Acta Scientiae Circumstantiae, 2017,37(6):2238-2247.
[14]
Ibanez J G, Hernandez-Esparza M, Doria-Serrano C, et al. Halogenated Hydrocarbons and the Ozone Layer depletion[J]. 2008:115-121.
[15]
靳全锋,陈磊,黄娟,等.甲醛对富贵竹的生理生化响应[J]. 环境科学与技术, 2016,39(8):45-50. Jin Q, Chen L, Huang J, et al. Influence of Indoor Formaldehyde on Physiological and Biochemical Characteristics of Dracaena Sanderiana[J]. Environmental Science & Technology, 2016,39(8):45-50.
[16]
Udeigwe T K, Teboh J M, Eze P N, et al. Implications of leading crop production practices on environmental quality and human health[J]. Journal of environmental management, 2015,151:267-279.
[17]
Xue J, Yuan Z, Griffith S M, et al. Sulfate formation enhanced by a cocktail of high NOx, SO2, particulate matter, and droplet pH during Haze-Fog events in Megacities in China:An observation-based modeling investigation[J]. Environmental Science & Technology, 2016,50(14):7325.
[18]
Mazurkiewiczzapa?owicz K, Janowicz K, Nowak A, et al. Effect of the product of radiational refinement of combustion gases of SO2 and NOx on the chosen soil microorganisms[J]. Folia Universitatis Agriculturae Stetinensis Agricultura, 2000.
[19]
Chen Y. A new digital georeferenced database of grassland in China[J]. 1998,24(2):228-231.
[20]
靳全锋,鞠园华,杨夏捷,等.2005~2014年内蒙古草地火灾排放污染物的时空格局[J]. 草业学报, 2017,26(2):21-29. Jin Q, Ju Y, Yang X, et al. Temporal and spatial patterns of emissions and pollutants from grassland burned in Inner Mongolia during 2005~2014[J]. Acta Prataculturae Sinica, 2017,26(2):21-29.
[21]
宫大鹏,康峰峰,刘晓东.新巴尔虎草原火时空分布特征及对气象因子响应[J]. 北京林业大学学报, 2018,40(2):82-89. Gong D, Kang F, Liu X. Spatial and temporal distribution patterns of grassland fire and its response to meteorological factors in XinBarag Prairie of northwestern China[J]. Journal of Beijing Forestry University, 2018,40(2):82-89.
[22]
李兴华,武文杰,张存厚,等.气候变化对内蒙古东北部森林草原火灾的影响[J]. 干旱区资源与环境, 2011,25(11):114-119. Li X, Wu W, Zhang C, et al. Influence of climate change on northeastern of Inner Mongolia grassland forest fire[J]. Journal of Arid Land Resources and Environment, 2011,25(11):114-119.
[23]
Na L, Zhang J, Bao Y, et al. Himawari-8satellite based dynamic monitoring of grassland fire in China-Mongolia border regions[J]. Sensors, 2018,18(1):276-285.
[24]
Chen J, Zheng W, Liu C. Application of grassland fire monitoring based on Himawari-8geostationary meteorological satellite data[J]. Natural Disasters, 2017,26:197-204.
[25]
Liu X P, Zhang J Q, Tong Z J. Modeling the early warning of grassland fire risk based on fuzzy logic in Xilingol, Inner Mongolia[J]. Natural Hazards, 2015,75(3):2331-2342.
[26]
Liu X P, Zhang J Q, Tong Z J, et al. GIS-based multi-dimensional risk assessment of the grassland fire in northern China[J]. Natural Hazards, 2012,64(1):381-395.
[27]
辛喆,王顺喜,云峰,等.基于火灾模拟软件(FDS)的草原火灾蔓延规律数值分析[J]. 农业工程学报, 2013,29(11):156-163+296. Xin Z, Wang S, Yun F, et al. Numerical analysis on spreading laws of grassland fire based on fire dynamics simulator FDS[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013,29(11):156-163.
[28]
郭福涛,靳全锋,苏漳文,等.一种生物质燃烧的采样系统.中国, CN207336163U[P], 2018-05-08. Guo F, Jin Q, Su Z, et al. Biomass combustion sampling system. China, CN207336163U[P]. 2018-05-08.
[29]
Zhang Y S, Min S, Yun L, et al. Emission inventory of carbonaceous pollutants from biomass burning in the Pearl River Delta region, China[J]. Atmospheric Environment, 2013,76(5):189-199.
[30]
Chow J C, Watson J G, Chen L W A, et al. Equivalence of elemental carbon by thermal/optical reflectance and transmittance with different temperature protocols[J]. Environ. Sci. Technol., 2004,38(16):4414-4422.
[31]
Amraoui M, Pereira M G, Dacamara C C, et al. Atmospheric conditions associated with extreme fire activity in the Western Mediterranean region[J]. Science of the Total Environment, 2015, 524:32-39.
[32]
Zhou X C, Wang X Q. Validate and improvement on arithmetic of identifying forest fire based on EOS-MODIS data[J]. Remote Sensing Technology & Application, 2006,21(3):206-211.
[33]
Ma W H, Fang J Y, Yang Y H, et al. Biomass carbon stocks and their changes in northern China's grasslands during 1982~2006[J]. Science China-life Sciences, 2010,53:841~850, https://doi:10.1007/s11427-010-4020-6.
[34]
Akagi S K, Yokelson R J, Wiedinmyer C, et al. Emission factors for open and domestic biomass burning for use in atmospheric models[J]. Atmospheric Chemistry & Physics, 2011,11(9):27523-27602.
[35]
Wu J, Kong S, Wu F, et al. Estimating the open biomass burning emissions in Central and Eastern China from 2003 to 2015 based on satellite observation[J]. Atmospheric Chemistry & Physics, 2018:1-49,https://doi.org/10.5194/acp-18-11623-2018.
[36]
Kato E, Michio K Y, Kinoshita T, et al. Development of spatially explicit emission scenario from land-use change and biomass burning for the input data of climate projection[J]. Procedia Environmental Sciences, 2011,6(1).146-152.
[37]
Shen G, Yang Y, Wang W, et al. Emission factors of particulate matter and elemental carbon for crop residues and coals burned in typical household stoves in China[J]. Environmental science & technology, 2011,44(18):7157-7162.
[38]
Zhou Y, Xing X, Lang J, et al. A comprehensive biomass burning emission inventory with high spatial and temporal resolution in China[J]. Atmospheric Chemistry and Physics, 2017,17(4):2839.
[39]
IPCC. Quantifying uncertainties in practice, Chapter 6. In:Good practice guidance and uncertainty management in national greenhouse gas inventories. Bracknell:IES,IPCC,OECD, 1997.
[40]
Goode J G, Yokelson R J, Susott R A, et al. Trace gas emissions from laboratory biomass fires measured by open path Fourier transform -infrared spectroscopy:Fires in grass and surface fuels[J]. Journal of Geophysical Research:Atmospheres, 1999,104(D17):21237-21245.
[41]
玉山,都瓦拉,刘桂香.内蒙古草原枯草期可燃物量遥感估测模型研究[J]. 干旱区资源与环境, 2014,28(11):145-151. Yu S, Du W, Liu G. Remote sensing estimation model for the withered season fuel weight in Inner Mongolia grassland[J]. Journal of Arid Land Resources & Environment, 2014,28(11):145-151.
[42]
都瓦拉.内蒙古草原火灾监测预警及评价研究[D]. 北京:中国农业科学院, 2012. Du W. A stutly of garassland fire Monitoring and early warning and Assessment Inner Mongolia[D]. Beijing:Chinese academy of agricultural science, 2012.
[43]
Mu S, Zhou S, Chen Y, et al. Assessing the impact of restorationinduced land conversion and management alternatives on net primary productivity in Inner Mongolian grassland, China[J]. Global and Planetary Change, 2013,108:29-41.
[44]
陈效逑,郑婷.内蒙古典型草原地上生物量的空间格局及其气候成因分析[J]. 地理科学, 2008,28(3):369-374. Chen X, Zheng T. Spatial patterns of aboveground biomass and its climatic attributions in typical steppe of Inner Mongolia[J]. Scientia Geographica Sinica, 2008,28(3):369-374.
[45]
Yan X Y, Ohara T, Akimoto H. Bottom-up estimate of biomass burning in mainland China[J]. Atmospheric Environment, 2006, 40(27):5262-5273.
[46]
峰芝.近30年内蒙古牧区草原火时空演化特征分析[D]. 呼和浩特:内蒙古师范大学, 2015. Feng Z. Spatiotem poral changes of grassland fire in Inner Mongolia in recent 30 years[D]. Hohhot:Inner Mongolia Normal University, 2015.
[47]
张正祥,张洪岩,李冬雪,等.呼伦贝尔草原人为火空间分布格局[J]. 生态学报, 2013,33(7):2023-2031. Zhang Z, Zhang H, Li D, et al. Spatial distribution pattern of human-caused fires in Hulunbeir grassland[J]. Acta Ecologica Sinica, 2013,33(7):2023-2031.
[48]
周怀林,王玉辉,周广胜.内蒙古草原火的时空动态特征研究[J]. 草业学报, 2016,25(4):16-25. Zhou H, Wang Y, Zhou G. Temporal and spatial dynamics of grassland fires in Inner Mongolia[J]. Acta Prataculturae Sinica, 2016,25(4):16-25.
[49]
Zhang Z X, Zhang H Y, Zhou D W. Using GIS spatial analysis and logistic regression to predict the probabilities of human-caused grassland fires[J]. Journal of arid environments, 2010,74(3):386-393.
[50]
陆炳,孔少飞,韩斌,等.2007年中国大陆地区生物质燃烧排放污染物清单[J]. 中国环境科学, 2011,31(2):186-194. Lu B, Kong S, Han B, et al. Inventory of atmospheric pollutants discharged from biomass burning in China continent in 2007[J]. China Environmental Science, 2011,31(2):186-194.