Ultraviolet photocatalytic removal of ammonia nitrogen and DOC by GO/(CeO2-TiO2) modified composite membrane
ZHANG Zhi-wei1, XU Bin1, ZHANG Yi-min1,2, YANG Fei1, ZHANG Shu-ling2
1. Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, China;
2. School of Environmental and Safety Engineering, Changzhou University, Changzhou 213164, China
The polyvinylidene fluoride (PVDF) microfiltration membrane was modified by vacuum filtration method with cerium oxide-titanium dioxide (CeO2-TiO2), graphene oxide-cerium dioxide (GO-CeO2), graphene oxide-titanium dioxide (GO-TiO2) and graphene oxide/titanium dioxide-cerium oxide[GO/(CeO2-TiO2)], respectively, to prepare composite membranes. The structure and light absorptivity of the composite membranes were investigated by X-ray diffraction, ultraviolet visible diffuse reflection, scanning electron microscopy and Fourier transform infrared spectroscopy. The removal efficiencies of ammonia nitrogen and DOC by composite membranes under dark and ultraviolet light conditions were studied by using the lake water samples from GehuLake branch in Changzhou as raw water. Under dark condition, (GO-CeO2) composite membrane had the highest removal efficiency of ammonia nitrogen (28.21%) and GO/(CeO2-TiO2) composite membrane had the highest removal efficiency of DOC (29.58%). Under ultraviolet light condition, the synergistic effect ofGO, CeO2 and TiO2 resulted in the best removal effect of ammonia nitrogen (65.4%) and DOC (54.7%) byGO/(CeO2-TiO2) composite membrane.
Vesselin L, Dilyana T, Lubima B. Promoting the oxidative removal rate of 2,4-dichlorophenoxyacetic acid on gold-doped WO3/TiO2/reduced graphene oxide photocatalysts under UV light irradiation[J]. Journal of Photochemistry and Photobiology A:Chemistry, 2018,351:69-77.
[2]
Liu G P, Jin W Q, Xu N P. Two-dimensional-material membranes:A new family of high-performance separation membranes[J]. Angewandte Chemie International Edition, 2016,55(43):13384-13397.
[3]
Upadhyay R K, Soin N, Roy S S. Role of graphene/metal oxide composites as photocatalysts, adsorbents and disinfectants in water treatment:a review[J]. RSC Advanced, 2014,4:3823-3851.
[4]
Chowdhury S, Balasubramanian R. Graphene/semiconductor nanocomposites (GSNs) for heterogeneous photocatalytic decolorization of wastewaters contaminated with synthetic dyes:a review[J]. Applied Catalysis B:Environmental, 2014,160-161:307-324.
[5]
Zhang N, Zhang Y, Xu X Y. Recent progress on graphene-based photocatalysts:current status and future perspectives[J]. Nanoscale, 2012,4:5792-5813.
[6]
Xiang Q, Yu J, Jaroniec M. Graphene-based semiconductor photocatalysts[J].Chemical Society Reviews, 2012,41:782-796.
[7]
Song X, Wang H, Li Y, et al. Solvothermal synthesis of P25/Bi2WO6 nanocomposite photocatalyst and photocatalytic degradation of ethylene under visible light[J]. Applied Surface Science, 2018,439:815-822.
[8]
Ma F Y, Yang Y, Li N, et al. Comparison of photocatalytic activity of Bi2WO6/TiO2 nanotubes heterostructures composite under multimode[J]. Chinese Journal of Inorganic Chemistry, 2017,33(9):1656-1666.
[9]
Hou J, Yang C, Wang Z, et al.Bi2O3 quantum dots decorated anatase TiO2 nanocrystals with exposed {001} facets on graphene sheets for enhanced visible-light photocatalytic performance[J]. Applied Catalysis B:Environmental, 2013,129:333-341.
[10]
Li H, Xia Z, Chen J, et al. Constructing ternary CdS/reduced graphene oxide/TiO2 nanotube arrays hybrids for enhanced visible-light-driven photoelectrochemical and photocatalytic activity[J]. Applied Catalysis B:Environmental, 2015,168-169:105-113.
[11]
Kim D W, Lee S, Jung H S, et al. Effects of heterojunction on photoelectrocatalytic properties of ZnO-TiO2 films[J]. International Journal of Hydrogen Energy, 2007,32:3137-3140.
[12]
Wei Y B, Zhu Y X, Jiang Y J, et al. Photocatalytic self-cleaning carbon nitride nanotube intercalated reduced graphene oxide membranes for enhanced water purification[J]. Chemical Engineering Journal, 2019,356:915-925.
[13]
Almeida N A, Martins P M, Teixeira S, et al. TiO2/graphene oxide immobilized in P(VDF-TrFE) electrospun membranes with enhanced visible-light-induced photocatalytic performance[J]. Journal of Materials Science, 2016,51:6974-6986.
[14]
Gabriela B V, Humberto J J, Michael P, et al. CeO2/TiO2 nanostructures enhance adsorption and photocatalytic degradation of organic compounds in aqueous suspension[J]. Journal of Photochemistry and Photobiology A:Chemistry, 2018,353:325-336.
[15]
刘岑岑.二氧化钛薄膜的制备、改性及其光催化性能研究[D]. 杭州:浙江大学, 2010. Liu C C. Preparation, modification of TiO2 films and theirs photocatalytic properties[D]. Hangzhou:Zhejiang University, 2010.
[16]
Zhang Q, Chen S, Fan X F, et al. A Multifunctional graphene-based nanofiltration membrane under photo-assistance for enhanced water treatment based on layer-by-layer sieving[J]. Applied Catalysis B:Environmental, 2018,224:204-213.
[17]
Hu X B, Yua Y, Hou W M, et al. Effects of particle size and pH value on the hydrophilicity ofgraphene oxide[J]. Applied Surface Science, 2013,273:118-121.
[18]
Long M C, Qin Y L, Chen C,et al.Origin of visible light photoactivity of reduced graphene oxide/TiO2 by in situ hydrothermal growth of undergrown TiO2 with graphene oxide[J]. The Journal of Physical Chemistry C, 2013,117:16734-16741.
[19]
郑思源,王雅文,樊彩梅.三维有序大孔TiO2-CeO2光催化剂的制备及性能研究[J]. 人工晶体学报, 2018,47(7):1324-1329. Zheng S Y, Wang Y W, Fan C M. Study on the preparation and performance of 3D ordered large-hole TiO2/CeO2 photocatalysts[J]. Journal of Synthetic Crystals, 2018,47(7):1324-1329.
[20]
冯静,陈洪林,张小明.纳米二氧化铈的可控形貌合成及其催化性能[J]. 化工环保, 2018,38(5):559-564. Feng J, Chen H L, Zhang X M. Controllable morphological synthesis of nano-zirconium dioxide and its catalytic properties[J]. Environmental Protection of Chemical Industry, 2018,38(5):559-564.
[21]
李翠霞,康伟超,任一波,等.P123对rGO/m-TiO2薄膜微观结构及光催化性能的影响[J]. 中国环境科学, 2019,39(9):3754-3760. Li C X, Kang W C, Ren Y B, et al. Effect of P123on the microstructure and photocatalytic activity of rGO/mesoporous TiO2films[J]. ChinaEnvironmental Science, 2019,39(9):3754-3760.
[22]
Huang Y, Yan CF, Guo CQ, et al. Experimental and first-principles DFT study on oxygen vacancies on cerium dioxide and its effect on enhancedphotocatalytic hydrogen production[J]. International Journal of Hydrogen Energy, 2016,41:7919-7926.
[23]
Hao C, Li J, Zhang Z, et al. Enhancement of photocatalytic properties of TiO2 nanoparticles doped with CeO2 and supportedon SiO2 for phenol degradation[J]. Applied Surface Science, 2015,331:17-26.
[24]
Zha K, Cai S, Hu H, et al. Insitudrifts investigation of promotional effects of tungstenon MnOx-CeO2/meso-TiO2 catalysts for NOx reduction[J]. Journal of Physical Chemistry A, 2017,121(45):25243-25254.
[25]
Li L, Zhang L, Ma K, et al. Ultralow loading of copper modified TiO2/CeO2 catalysts for low-temperature selective catalytic reduction of NO by NH3[J]. Applied Catalysis B:Environmental, 2017,207:366-375.
[26]
Luo M, Qi X, Ren T, et al. Hetero aggregation of CeO2 and TiO2 engineered nanoparticles in the aqueous phase:Application NOF turbis can stability index and fluorescence excitation-emission matrix (EEM) spectra[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2017,533:9-19.
[27]
Zhang J, Sun L D, Yin J L M, et al. Contral of ZnO morphology via a simple solution route[J]. Chemistry Material, 2002,14(10):4172-4177.
[28]
Tuyen L T T, Quang D A, Toan T T, et al. Synthesis of CeO2/TiO2 nanotubes and heterogeneous photocatalytic degradation of methylene blue[J]. Journal of Environmental Chemical Engineering, 2018,6(5):5999-6011.
[29]
Hou C Y, Zhang Q H, Li Y G, et al. P25-Graphene hydrogels:Room-Temperature Synthesis and Application for Removal of methylene Blue from Aqueous Solution[J]. Journal of Hazardous Materials, 2012,205-206:229-235.
[30]
Hayashi Y, Hosokawa S, Inoe M. Pore structure control of CeO2 coagulate prepared from solvothermally synthesized CeO2 colloidal particles[J]. Microporous and Mesoporous Materials, 2010,128(1):115-119.
[31]
Agarwal S, Zhu X, Hense E J M, et al. Defectchemistry of ceria nanorods[J]. Journal of Physical Chemistry C, 2014,118(8):4131-4142.
[32]
Liu B, Yao M, Liu B, et al. High-pressurestudies on CeO2 nano-octahesrons with a (111)-terminated surface[J]. Journal of Physical Chemistry C, 2011,115(11):4546-4551.
[33]
李脆脆,王磊,李陈,等.SGO/PVDF-g-PSSA复合质子交换膜的制备及抗污染性研究[J]. 中国环境科学, 2019,39(1):149-156. Li C C, Wang L, Li C, et al. Preparation and characterization of SGO/PVDF-g-PSSA composite proton exchange membrane and its anti-fouling properties[J]. China Environmental Science, 2019, 39(1):149-156.
[34]
Lara L Y, Garca R G, Jim B G. Synthesis and characterization of carbon-titania-CeO2 composites and their applicationsin phenol degradation[J]. Journal of Rare Earths, 2017,35(6):551-558.