Abstract:This paper proposes a real-time and rapid detection method and device for detecting the size and abundance of microplastic particles by discontinuous liquid column, using the TENG technology based on self-powered. Through experimental tests, the size and morphology characterization of microplastics and the real-time and efficient detection of chemical element composition are completed. The study deduces that, when the micro-plastic particles are added into the deionized water, the Zeta potential in the solution is reduced, and the direction of the polarization of the electric field on the surface of the pipe wall is changed. In addition, with the increase of the diameter or abundance of microplastic particles in the aqueous solution, the output voltages show a decreasing trend. The output voltages is reduced by 43.1% at 50 μm and by 79.6% at 0.250%. Moreover, the micro-plastic particles have a significant impact on the output voltages of tap water. Considering 10 μm microplastic particles as example, the output voltages are reduced by 20%. This proves the feasibility of the TENG technology for the detection of marine microplastics.
向琴, 龙威, 冯朗, 李萌. 基于摩擦纳米发电机的微塑料实时检测实验研究[J]. 中国环境科学, 2022, 42(5): 2275-2282.
XIANG Qin, LONG Wei, FENG Lang, LI Meng. Real-time detection and experimental study of microplastics based on friction nanogenerator. CHINA ENVIRONMENTAL SCIENCECE, 2022, 42(5): 2275-2282.
Jambeck Jenna R, Geyer Roland, Wilcox Chris, et al. Marine pollution. Plastic waste inputs from land into the ocean. [J]. Science (New York, N.Y.), 2015,347(6223):768-771.
[2]
Thompson R. Microplastics in the Marine Environment: Sources, Consequences and Solutions [M]. Springer International Publishing, 2015:185-200.
[3]
Browne Mark A, Dissanayake Awantha, Galloway Tamara S, et al. Ingested microscopic plastic translocates to the circulatory system of the mussel, Mytilus edulis (L) [J]. Environmental Science & Technology, 2008,42(13):5026-5031.
[4]
Rochman Chelsea M, Tahir Akbar, Williams Susan L, et al. Anthropogenic debris in seafood: Plastic debris and fibers from textiles in fish and bivalves sold for human consumption [J]. Scientific Reports, 2015,5(1):14340.
[5]
Bouwmeester H, Hollman P C, Peters R J. Potential health impact of environmentally released micro-and nanoplastics in the human food production chain: Experiences from nanotoxicology [J]. Environ. Sci. Technol., 2015,49(15):8932-8947.
[6]
Hwang Jangsun, Choi Daheui, Han Seora, et al. An assessment of the toxicity of polypropylene microplastics in human derived cells [J]. Science of the Total Environment, 2019,684:657-669.
[7]
陈 舒.悄然来袭的“海洋PM2.5” [J]. 国土资源, 2018,(11):23-27. Chen S. Marine PM2.5 [J]. Land Resources, 2018,(11):23-27.
[8]
李富云,贾芳丽,涂海峰,等.海洋中微塑料的环境行为和生态影响 [J]. 生态毒理学报, 2017,12(6):11-18. Li F Y, Jia F L, Tu H F, et al. Environmental behavior and ecological impact of microplastics in the ocean [J]. Ecological Toxicology, 2017, 12(6):11-18.
[9]
朱逸宁,徐项亮,何一波,等.国内外微塑料法规现状 [J]. 中国洗涤用品工业, 2020,(8):52-57. Zhu Y L, Xu X L, He Y B, et al. Status of domestic and foreign regulations on microplastics [J]. China Washing Industry, 2020,(8): 52-57.
[10]
韩 佳.我国微塑料污染问题亟待解决 [J]. 科学技术创新, 2018, (23):186-187. Han J. The problem of microplastic pollution in China needs to be solved urgently [J]. Scientific and Technological Innovation, 2018, (23):186–187.
[11]
包 编.十年限塑不理想,须加强有效治理 [J]. 绿色包装, 2018, (7):87-91. Bao B. Ten-year plastic limit is not ideal to strengthen effective governance [J]. Green Packaging, 2018,(7):87-91.
[12]
张嘉戌,柳 青,张承龙,等.海洋塑料和微塑料管理立法研究 [J]. 海洋环境科学, 2019,38(2):167-177. Zhang J W, Liu Q, Zhang C L, et al. Legislative study on the management of marine plastics and microplastics [J]. Marine Environmental Science, 2019,38(2):167-177.
[13]
杜 静,于明曦,宋广军,等.基于双壳贝类指示的海洋微塑料污染监测与毒理学研究进展 [J]. 生态学杂志, 2018,37(7):2205-2212. Du J, Yu M X, Song G J, et al. Research progress in marine microplastic pollution monitoring and toxicology based on bivalve indication [J]. Ecological Journal, 2018,37(7):2205-2212.
[14]
Primpke S, Gerdts G, Dias P A. Automated identification and quantification of microfibres and microplastics [J]. Analytical Methods, 2019,11:2138–2147.
[15]
杨东琪.环境样品中微塑料理化特征的检测和表征方法 [D]. 上海:华东师范大学, 2017. Yang D Q. Detection and characterization of physical and chemical characteristics of microplastics in environmental samples [D]. Shanghai: Huadong Normal University, 2017.
[16]
吕露露.海洋微塑料检测方法研究 [D]. 湛江:广东海洋大学, 2020. Lu L L. Research on the detection method of marine microplastics [D]. Zhanjiang: Guangdong Ocean University, 2020.
[17]
Liron Zada, Heather A, Leslie A. Dick Vethaak, et al. Fast microplastics identification with stimulated Raman scattering microscopy [J]. Journal of Raman Spectroscopy, 2018,49(7):1136- 1144.
[18]
张玉佩,吴东旭,余建平,等.TGA-FTIR联用技术快速检测海水中的聚酰胺微塑料 [J]. 环境化学, 2018,37(10):2332-2334. Zhang Y P, Wu D X, Yu J P, et al. TGA-FTIR rapid detection of polyamide microplastics in seawater [J]. Environmental Chemistry, 2018,37(10):2332-2334.
[19]
Marius Majewsky, Hajo Bitter, Elisabeth Eiche, et al. Determination of microplastic polyethylene (PE) and polypropylene (PP) in environmental samples using thermal analysis (TGA-DSC) [J]. Science of the Total Environment, 2016,568:507-511.
[20]
Amanda R McCormick, Timothy J. Hoellein, Maxwell G. London, et al. Microplastic in surface waters of urban rivers: concentration, sources, and associated bacterial assemblages [J]. Ecosphere, 2016, 7(11).01556.
[21]
Wang Zhong-Min, Wagner Jeff, Ghosal Sutapa, et al. Stephen Wall. SEM/EDS and optical microscopy analyses of microplastics in ocean trawl and fish guts [J]. Science of the Total Environment, 2017:603- 604.
[22]
Inga V. Kirstein, Sidika Kirmizi, Antje Wichels, et al. Dangerous hitchhikers? Evidence for potentially pathogenic Vibrio spp. on microplastic particles [J]. Marine Environmental Research, 2016,120: 1-8.
[23]
Patricia M Peacock, Charles N McEwen. Mass spectrometry of synthetic polymers [J]. Analytical Chemistry, 2006,78(12):3957– 3964.
[24]
Daniel Rivas, Antoni Ginebreda, Sandra Pérez, et al. MALDI-TOF MS Imaging evidences spatial differences in the degradation of solid polycaprolactone diol in water under aerobic and denitrifying conditions [J]. Science of the Total Environment, 2016,566/567:27-33.
[25]
王中林.纳米发电机作为可持续性电源与有源传感器的商业化应用[J]. 中国科学:化学, 2013,43(6):759-762. Wang Z L. Commercial applications of nanogenerators as sustainable power sources and active sensors [J]. Chinese Science: Chemistry, 2013,43(6):759-762.
[26]
Zhao Jun, Wang Di, Zhang Fan, et al. Real-time and online lubricating oil condition monitoring enabled by triboelectric nanogenerator [J]. ACS nano, 2021,15(7):11869-11879.
[27]
Wenjing Fan, Qiang He, Keyu Meng, et al. Machine-knitted washable sensor array textile for precise epidermal physiological signal monitoring [J]. Science Advances, 2020,6(11):2840.
[28]
Liang Bo, Liu Yunhui, Zhao Yukun, et al. Development of bacterial biosensor for sensitive and selective detection of acetaldehyde [J]. Biosensors & Bioelectronics, 2021,193:113566-113566.
[29]
Liu Yaoyao, Zhao Weiwei, Liu Guoxu, et al. Self-powered artificial joint wear debris sensor based on triboelectric nanogenerator [J]. Nano Energy, 2021,85:105967.
[30]
Wicaksono Irmandy, Tucker I Carson, Sun Tao, et al. A tailored, electronic textile conformable suit for large-scale spatiotemporal physiological sensing in vivo [J]. npj Flexible Electronics, 2020,4(1): 45-57.
[31]
Jiang Yang, Dong Kai, An Jie, et al. UV-protective, self-cleaning, and antibacterial nanofiber-based triboelectric nanogenerators for self-powered human motion monitoring [J]. ACS Applied Materials & Interfaces, 2021,13(9):11205-11214.
[32]
Sun Hongling, Zhao Yi, Jiao Sulin, et al. Environment tolerant conductive nanocomposite organohydrogels as flexible strain sensors and power sources for sustainable electronics [J]. Advanced Functional Materials, 2021,31(24):1-11.
[33]
Yu Jinran, Gao Guoyun, Huang Jinrong, et al. Contact-electrification- activated artificial afferents at femtojoule energy [J]. Nature Communications, 2021,12(1):1581.
[34]
Jayababu Nagabandi, Kim Daewon. Co/Zn bimetal organic framework elliptical nanosheets on flexible conductive fabric for energy harvesting and environmental monitoring via triboelectricity [J]. Nano Energy, 2021,89(PA):106355.
[35]
Huang Jieyu, Hao Yi, Zhao Min, et al. All-fiber-structured triboelectric nanogenerator via one-pot electrospinning for self- powered wearable sensors [J]. ACS Applied Materials & Interfaces, 2021,13(21):24774-24784.
[36]
GB 5749-85 生活饮用水卫生标准 [S]. GB 5749-85 Standards for drinking water quality [S].