|
|
Thermochemical liquefaction characteristics of sewage sludge in the sub- and supercritical acetone |
|
|
Abstract Direct thermochemical liquefaction was adopted to convert sewage sludge into bio-oil, and the influences of the temperature, the ratio of sewage sludge to solvent (R1), catalyst and the volume ratio of solvent to reactor (R2) on the characteristics of the liquefaction of sewage sludge were investigated with the sub- and supercritical acetone as the solvent in a 1000mL autoclave. It was shown that the sewage sludge was basically converted at about 300℃, while at higher or lower temperature, the effect of liquefaction was worse. When the temperature was higher than 340℃, the ability of the acetone involving in the reaction obtained enhancement so that the yield of bio-oil was improved as far as 380℃. As other liquefaction conditions were consistent, the liquefaction of sewage sludge could gain a better effect at R1 10/200, R2 20% and adding 5% dosage NaOH as the catalyst. The FTIR (Fourier transformation infrared spectrometer) and GC-MS (gas chromatography-mass spectrometry) analyses indicated that heterocyclic nitrogen compounds, carboxylic acid, ester and ketone were the main components of the bio-oil and amidocyanogen, hydroxyl, alkyl and carbonyl were the main functional groups.
|
Received: 11 June 2009
|
|
|
|
|
|
|