|
|
Research on enhanced denitrification and phosphorus removal from reclaimed water by useing sponge iron/sulfur composite fillers and low electrical current |
XU Zhong-qiang, HAO Rui-xia, XU Peng-cheng, ZHANG Ya |
Key Laboratory of Beijing for Water Quality Science and Water Environmental Recovery Engineering, Beijing University of Technology, Beijing 100124, China |
|
|
Abstract In order to improve the quality of reclaimed water, a comparative study was conducted under different C/N and HRT conditions to examine the effect on advanced nitrogen and phosphorus removal by using sponge iron/sulfur composite fillers and low electrical current. The results indicated that both the sponge iron/sulfur composite fillers and low electrical current treatment can strengthen the removal efficiency of nitrogen and phosphorus, and their combination can further stabilize the pH value of 7.2~8.5 in the denitrification system. It was found that the removal of total nitrogen (TN) was mainly depended on the process of heterotrophic denitrification, hydrogen autotrophic denitrification and sulfur autotrophic denitrification, while 94.04% of the total phosphorus (TP) were removed in the form of iron-phosphate precipitation. Furthermore, biofilm was taken from the fillers to build the bacterial 16S rRNA gene clone library by adopting the high-throughput sequencing technologies. The results showed that the bacteria which can use both organic carbon and elemental hydrogen as its electron donor for denitrification accounted for 29.47% of the bacterial community in the sponge iron fillers system. The proportion of Thiobacillus bacteria which can use elemental sulfur as its electron donor reached 60.47% and 40.62% of the bacterial community in the system of sponge iron/sulfur composite fillers and the combined system of composite fillers with low electrical current, respectively.Therefore, there are obvious advantages of employing sponge iron/sulfur composite fillers and low electrical current to enhance the effect of advanced nitrogen and phosphorus removal from reclaimed water.
|
Received: 08 August 2015
|
|
|
|
|
[1] |
胡洪营,吴乾元,黄晶晶,等.国家"水专项"研究课题-城市污水再生利用面临的重要科学问题与技术需求[J]. 建设科技, 2010, (3):33-35.
|
[2] |
官策,郁达伟,郑祥,等.我国人工湿地在城市污水处理厂尾水脱氮除磷中的研究与应用进展[J]. 农业环境科学学报, 2012,31(12):2309-2320.
|
[3] |
宋姬晨,王淑莹,杨雄,等.亚硝酸盐对A2O系统脱氮除磷的影响[J]. 中国环境科学, 2014,34(9):2231-2238.
|
[4] |
李彭,唐蕾,左剑恶,等.以PHAs为固体碳源的城镇二级出水深度脱氮研究[J]. 中国环境科学, 2014,34(2):331-336.
|
[5] |
孟成成,郝瑞霞,王建超,等.3BER-S耦合脱氮系统运行特性研究[J]. 中国环境科学, 2014,34(11):2817-2823.
|
[6] |
郝瑞霞,王建超,孟成成,等.电流对三维电极生物膜耦合硫自养脱氮工艺的影响[J]. 北京工业大学学报, 2015,6:919-925.
|
[7] |
刘俊新,李杰,王亚娥.铁细菌在污水除磷中的应用研究[J]. 环境科技, 2012,25(6):61-65.
|
[8] |
Till B A, Alvarez P. Fe(0)-supported autotrophic denitrification[J]. Environmental Science and Technology, 1998,32(5):634-639.
|
[9] |
Shin K H, Cha D K. Microbial reduction of nitrate in the presence of nanoscale zero-valent iron[J]. Chemosphere, 2008,72(2):257-262.
|
[10] |
KIELEMOES J, VERSTRAETE W. Influence of Denitrification on the Corrosion of Iron and Stainless Steel Powder[J]. Environmental Science and Technology, 2000,34(4):663-671.
|
[11] |
匡颖,董启荣,王鹤立.海绵铁与火山岩填料A/O生物滴滤池脱氮除磷的中试研究[J]. 水处理技术, 2012,(9):50-53.
|
[12] |
Batchelor B, Lawrence A W. Autotrophic Denitrification Using Elemental Sulfur[J]. Journal of the Water Pollution Control Federation, 1978,50(8):1986-2001.
|
[13] |
Lawrence A W, Bisogni Jr. J J, Batchelor B, et al. Autotrophic Denitrification Using Sulfur Electron Donors[J]. 1978(600/2-78-113).
|
[14] |
冯玉杰,沈宏,杨靖明,等.电极生物膜法反硝化工艺条件及过程[J]. 哈尔滨工业大学学报, 2008,40(12):1956-1961.
|
[15] |
ZHAO Y X, FENG C P, WANG Q H, et al. Nitrate removal from groundwater by cooperating heterotrophic with autotrophic denitrification in a biofilm-electrode reactor[J]. Journal of Hazardous Materials, 2011,192(3):1033-1039.
|
[16] |
李素梅,郝瑞霞,孟成成.三维电极生物膜反应器低温启动试验研究[J]. 中国给水排水, 2013,29(5):101-105.
|
[17] |
Hao R X, Li S M, Li J B, et al. Denitrification of simulated municipal wastewater treatment plant effluent using a three-dimensional biofilm-electrode reactor:operating performance and bacterial community[J]. Bioresource Technology, 2013,143:178-186.
|
[18] |
姜巍,曲久辉,雷鹏举,等.固定床自养反硝化去除地下水中的硝酸盐氮[J]. 中国环境科学, 2001,21(2):38-41.
|
[19] |
Zhou M, Fu W, Gu H, et al. Nitrate removal from groundwater by a novel three-dimensional electrode biofilm reactor. Electrochimica Acta, 2007,52(19):6052-6059.
|
[20] |
Sun Y M, Nemati M. Evaluation of sulfur-based autotrophic denitrification and denitritation for biological removal of nitrate and nitrite from contaminated waters. BIORESOURCE TECHNOLOGY, 2012,114:207-216.
|
[21] |
孟成成.基于分子生物学技术的三维电极生物膜与硫自养耦合脱氮工艺研究[D]. 北京:北京工业大学, 2014.
|
[22] |
陈华.化学沉淀法除磷和生物法除磷的比较[J]. 上海环境科学, 1997,6:33-35.
|
[23] |
周康群,刘晖,孙彦富,等.反硝化聚磷菌的SBR反应器中微生物种群与浓度变化[J]. 中南大学学报(自然科学版), 2008,4:705-711.
|
[24] |
龙向宇,方振东,唐然,等.胞外聚合物在生物除磷中作用的研究[J]. 环境科学学报, 2012,4:784-789.
|
[25] |
龙向宇,龙腾锐,唐然,等.2008.污泥龄对胞外聚合物组分与表面性质的影响[J]. 中国给水排水, 24(15):1-6.
|
[26] |
徐亚同. pH值、温度对反硝化的影响[J]. 中国环境科学, 1994,14(4):308-313.
|
[27] |
许晴,张放,许中旗,等. Simpson指数和Shannon-Wiener指数若干特征的分析及"稀释效应"[J]. 草业科学, 2011,4:527-531.
|
[28] |
郝瑞霞,孟成成,王建超,等.三维电极生物膜-硫自养耦合脱氮系统中反硝化细菌多样性研究[J]. 北京工业大学学报, 2014,11:1722-1729+1740.
|
[29] |
Chaganti S R, Lalman J A, Heath D D. 16S rRNA gene based analysis of the microbial diversity and hydrogen production in three mixed anaerobic cultures[J]. International Journal of Hydrogen Energy, 2012,37(11):9002-9017.
|
[30] |
Magurran A E,张峰主,译.生物多样性测度[M]. 北京:科学出版社, 2011,70-71.
|
[31] |
Shinoda Y, Sakai Y, Uenishi H, et al. Aerobic and anaerobic toluene degradation by a newly isolated denitrifying bacterium, Thauerasp strain DNT-1[J]. AppliedAnd Environmental Microbiology, 2004,70(3):1385-1392.
|
[32] |
毛跃建.废水处理系统中重要功能类群Thauera属种群结构与功能的研究[D]. 上海:上海交通大学, 2009.
|
[33] |
余鸿婷,李敏.反硝化聚磷菌的脱氮除磷机制及其在废水处理中的应用[J]. 微生物学报, 2015,3:264-272.
|
[34] |
Letain T E, Kane S R, Legler T C, et al. Development of a genetic system for the chemolithoautotrophic bacterium Thiobacillus denitrificans[J]. Applied and Environmental Microbiology, 2007,73(10):3265-3271.
|
[35] |
Shao M F, Zhang T, Fang H. Sulfur-driven autotrophic denitrification:diversity, biochemistry, and engineering applications[J]. Applied Microbiology and Biotechnology, 2010, 88(5):1027-1042.
|
[36] |
Wang H Y, Zhou Y X, Yuan Q, et al. Bacteria morphology and diversity of the combined autotrophic nitritation and sulfurcarbon three-dimensional-electrode denitrification process[J]. Journal of Environmental Science and Health Part A-Toxic/hazardous Substances & Environmental Engineering, 2014,49(1):39-51.
|
|
|
|