|
|
Adsorption behavior of gentamicin on hydroxy-Fe-Al intercalated montmorillonite |
FANG Sheng-qiong1,2, Pan Jin2, LI Xiao1, WENG Hong-ping2, QIU Ling-feng2 |
1. School of Chemical Engineering, Fuzhou University, Fuzhou 350116, China;
2. School of Environment and Resources, Fuzhou University, Fuzhou 350116, China |
|
|
Abstract Pristine montmorillonite (Mont) samples were used as raw materials to prepare hydroxyl-Fe-pillared Mont (xOH/Fe-Mont, x: molar ratio of OH/Fe), hydroxyl-Al-pillared Mont (OH/Al-Mont) and hydroxyl-Fe-Al-pillared Mont (yFe/Al-Mont, y: molar ratio of Fe/Al) composites for the adsorption of gentamicin (Gen). These composites were comprehensively characterized through X-ray diffraction (XRD) and Fourier transformed infrared (FT-IR) spectroscopy to reveal the adsorption behavior of pristine and modified Mont for Gen. The adsorption capacity of the Mont composites was significantly enhanced after modification, with the adsorption order of pristine Mont (42.83mg/g) << OH/Al-Mont (63.50mg/g) < 1.5OH/Fe-Mont (70.50mg/g) << 0.025Fe/Al-Mont (87.20mg/g). Specifically, the Mont composites showed the maximum adsorption capacity at pH 9. Furthermore, Freundlich adsorption isotherm model could well fit the experimental data. The pseudo-second-order kinetic model could sufficiently describe the kinetics of Gen adsorption, showing that over 80% of the equilibrium adsorption capacity of Gen can be obtained in 3h. XRD analysis demonstrates that the interlayer expansion in hydroxyl-Fe and hydroxyl-Al dominant (y≤0.5) pillared montmorillonite was the dominant reason for the enhancement of adsorption capacity of Gen. However, this is not a crucial indication for the enhancent in adsorption capacity of hydroxyl-Fe-Al-pillared Mont (y≥1.0). Through the FT-IR analysis, cationic exchange was the dominant mechanism for entering of both Gen and and hydroxyl-Al into the interlayer of hydroxyl-Al Mont.
|
Received: 22 August 2015
|
|
|
|
|
[1] |
Sarmah A K, Meyer M T, Boxall A. A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment[J]. Chemosphere, 2006,65(5):725-59.
|
[2] |
Hao R, Zhao R, Qiu S, Wang L, et al. Antibiotics crisis in China[J]. Science, 2015,348:1100-1101.
|
[3] |
高 岳.氨基糖苷类抗生素应用的新机遇[J]. 生物技术进展, 2014,2:102-106.
|
[4] |
徐铮奎.氨基糖苷类抗生素何日重现辉煌[J]. 中国制药信息, 2013,4:34-36.
|
[5] |
Ruixue H, Ping D, Dequn H, et al. Antibiotic pollution threatens public health in China[J]. Lancet, 2015,385(2):773-774.
|
[6] |
Gavalchin J, Katz S E. The persistence of fecal-borne antibiotics in soil[J]. Journal of AOAC International, 1994,77(2):48-485.
|
[7] |
Kemper, Nicole. Veterinary antibiotics in the aquatic and terrestrial environment[J]. Ecological Indicators, 2008,8(1):1-13.
|
[8] |
Zhang Q, Ying G, Pan C, et al. Comprehensive evaluation of antibiotics emission and fate in the river basins of China: source analysis, multimedia modeling, and linkage to bacterial resistance[J]. Environ. Sci. Technol., 2015,49(11):6772-6782.
|
[9] |
欧丹云,陈 彬,陈灿祥,等.九龙江下游河口水域抗生素及抗性细菌的分布[J]. 中国环境科学, 2013,33(12):2243-2250.
|
[10] |
薛保铭,杨惟薇,王英辉,等.钦州湾水体中磺胺类抗生素污染特征与生态风险[J]. 中国环境科学, 2013,33(9):1664-1669.
|
[11] |
Kim S C, Carlson K. Temporal and spatial trends in the occurrence of human and veterinary antibiotics in aqueous and river sediment matrices[J]. Environ. Sci. Technol., 2007,41(1): 50-57.
|
[12] |
Watkinson A J, Murby E J, Kolpin D W, et al. The occurrence of antibiotics in an urban watershed: from wastewater to drinking water[J]. Sci. Total Environ., 2009,407(8):2711-2723.
|
[13] |
Mispagel H, Gray J T. Antibiotic resistance from wastewater oxidation ponds[J]. Wat. Environ. Res., 2005:77(7):2996-3002.
|
[14] |
Löffler D, Ternes T A. Analytical method for the determination of the aminoglycoside gentamicin in hospital wastewater via liquid chromatography-electrospray-tandem mass spectrometry[J]. Journal of Chromatography A, 2003,1000(1/2):583-588.
|
[15] |
陈曌君,张 磊,叶 辉.杭州市自然水体细菌耐药性动态监测[J]. 浙江预防医学, 2013,12:56-60.
|
[16] |
葛 峰,郭 坤,周广灿,等.南京市4个污水处理厂的活性污泥中细菌的分离鉴定和抗生素耐药性分析[J]. 环境科学, 2012, 33(5):1646-1651.
|
[17] |
Zeng L, Wang S. Adsorption of Zearalenone by Montmorillonite[J]. Advanced Materials Research, 2013,683:343-347.
|
[18] |
Sassmann S A, Lee L S. Sorption of three tetracyclines by several soils: assessing the role of pH and cation exchange[J]. Environ. Sci. Technol., 2005,39(19):7452-7459.
|
[19] |
Chang P H, Li Z H, Jiang W T, et al. Adsorption and intercalation of tetracycline by swelling clay minerals[J]. Applied Clay Science, 2009,46(1):27-36.
|
[20] |
Aristilde L, Bruno L, Laurent C. Interstratification patterns from the pH-Dependent intercalation of a tetracycline antibiotic within montmorillonite layers[J]. Langmuir, 2013, 29(14):4492-4501.
|
[21] |
Anggraini M, Kurniawan A, Ong L K, et al. Antibiotic detoxification from synthetic and real effluents using a novel MTAB surfactant-montmorillonite (organoclay) sorbent[J]. RSC Advances, 2014,31(4):16298-16311.
|
[22] |
Wu Q, Li Z, Hong H. Adsorption of the quinolone antibiotic nalidixic acid onto montmorillonite and kaolinite[J]. Applied Clay Science, 2013,74(4):66-73.
|
[23] |
Hao C, Gao B, Yang L, et al. Montmorillonite enhanced ciprofloxacin transport in saturated porous media with sorbed ciprofloxacin showing antibiotic activity[J]. Journal of Contaminant Hydrology, 2015,173(2):1-7.
|
[24] |
Essington M E, Lee J, Seo Y. Adsorption of Antibiotics by Montmorillonite and Kaolinite[J]. Soil Science Society of America Journal, 2010,74(5):1577-1588.
|
[25] |
吴平霄.聚羟基铁铝复合柱撑蒙脱石的微结构特征[J]. 硅酸盐学报, 2003,31(10):1016-1020.
|
[26] |
袁 鹏,王辅亚,肖万生,等.铁层离柱撑蒙脱石的结构初探[J]. 矿物岩石, 2005,25(3):37-40.
|
[27] |
Shao H, Liu Y, Ji K, et al. Preparation and structure characterization of hydroxyl Al pillared montmorillonite[J]. Chemical Analysis And Meterage, 2015,24(1):61-63.
|
[28] |
邬行彦,刘叶青,周文龙.磺酸基树脂吸附庆大霉素的最适pH[J]. 华东化工学院学报, 1982,9(1):102-104.
|
[29] |
Sithole B B, Guy R D. Models for tetracycline in aquatic environments interaction with bentonite clay systems[J]. Water, Air, Soil Pollut., 1987,32:303-314.
|
[30] |
Kulshrestha P, Giese R F, Aga D S. Investigating the molecular interactions of oxytetracycline in clay and organic matter: Insights on factors affecting its mobility in soil[J]. Environ. Sci. Technol., 2004,38(15):4097-4105.
|
[31] |
Figueroa R A, Leonard A, MacKay A A. Modeling tetracycline antibiotic sorption to clays[J]. Environ. Sci. Technol., 2004, 38(2):476-483.
|
[32] |
Pils J R, Laird D A. Sorption of tetracycline and chlortetracycline on K-and Ca-saturated soil clays, humic substances, and clay-humic complexes[J]. Environ. Sci. Technol., 2007,41(6):1928-1933.
|
[33] |
Tombácz E, Szekeres M. Colloidal behavior of aqueous montmorillonite suspensions: the specific role of pH in the presence of indifferent electrolytes[J]. Applied Clay Science, 2004,27(1):75-94.
|
[34] |
Sciascia L, Liveri M L T, Merli M. Kinetic and equilibrium studies for the adsorption of acid nucleic bases onto K10montmorillonite[J]. Applied Clay Science, 2011,53(4):657-668.
|
[35] |
Goswami M, Borah L, Mahanta D, et al. Equilibrium modeling, kinetic and thermodynamic studies on the adsorption of Cr(VI) using activated carbon derived from matured tea leaves[J]. Journal of Porous Materials, 2014,21(6):1025-1034.
|
[36] |
Ho Y S, Mckay G. Pseudo-second order model for sorption processes[J]. Process Biochemistry, 1999,34(5):451-465.
|
[37] |
Shu Y, Li L, Zhang Q, et al. Equilibrium,kinetics and thermodynamic studies for sorption of chlorobenzenes on CTMAB modfied bentonite and kaolinite[J]. Journal of Hazardous Materials, 2010,173(1/3):47-53.
|
|
|
|