|
|
Distribution of sulfate-reducing bacteria in surface sediments from East China Sea |
ZHANG Yu1,2,3, HE Hui2,3,4, MI Tie-zhu1,2,3, ZHEN Yu1,2,3, FU Lu-lu2,3,4, CHEN Ye2,3,4 |
1. College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China;
2. Key Laboratory of Marine Environment and Ecology, Ministry of Education, Qingdao 266100, China;
3. Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China;
4. College of Marine Life Science, Ocean University of China, Qingdao 266003, China |
|
|
Abstract Sulfate-reducing bacteria (SRB) are ubiquitous and quantitatively important members in many ecosystems, especially in marine sediments. In this study, the abundance and distribution of SRB was investigated in the surface sediments from East China Sea in April, July, August and October, 2011. A quantitative polymerase chain reaction (qPCR) analysis targeted the dissimilatory sulfite reductase β subunit gene (dsrB), which encodes a key enzyme in the sulfate reduction pathway, was performed to assess the abundance of the SRB in the sediments. The abundance of SRB ranged from 1.87×105 to 4.69×108 cells per gram wet weight sediment, with the lowest and the highest value in April and July, respectively. The ratios of SRB to total bacteria varied from around 0.0039%~1.6176%, which implied that SRB constituted a very small proportion of the total bacteria. The abundance of SRB in the southern areas was higher than that in the northern areas, and the abundance of SRB in the mud area was much higher than that in the non-mud area. In addition, statistical analysis demonstrated that temperature and dissolved oxygen concentration were important factors affecting the distribution of SRB abundance. This study presented the temporal and spatial distribution characteristics of SRB abundance, providing insights into understanding the carbon and sulfur biogeochemical cycles in the surface sediments from East China Sea.
|
Received: 25 April 2016
|
|
|
|
|
[1] |
任南琪,王爱杰,赵阳国.废水厌氧处理硫酸盐还原菌生态学[M].北京:科学出版社,2009:1.
|
[2] |
Pester M,Knorr K H,Friedrich M W,et al.Sulfate-reducing microorganisms in wetlands-fameless actors in carbon cycling and climate change[J].Frontiers in Microbiology,2012,3(72):1-19.
|
[3] |
Rabus R,Venceslau S S,Wöhlbrand L,et al.Chapter Two-A post-genomic view of the ecophysiology,catabolism and biotechnological relevance of sulphate-reducing prokaryotes[J].Advances in Microbial Physiology,2015,66:55-321.
|
[4] |
Jørgensen B B.Mineralization of organic matter in the sea bed-the role of sulphate reduction[J].Nature,1982,296:643-645.
|
[5] |
Molitor M,Dahl C,Molitor I,et al.A dissimilatory sirohaem-sulfite-reductase-type protein from the hyperthermophilic archaeon Pyrobaculum islandicum[J].Microbiology,1998,144(2):529-541.
|
[6] |
鲍林林,王晓燕,陈永娟,等.北运河沉积物中主要脱氮功能微生物的群落特征[J].中国环境科学,2016,36(5):1520-1529.
|
[7] |
洪晨,邢奕,司艳晓,等.铁矿区内重金属对土壤氨氧化微生物群落组成的影响[J].中国环境科学,2014,34(5):1212-1221.
|
[8] |
鲍林林,陈永娟,王晓燕.北运河沉积物中氨氧化微生物的群落特征[J].中国环境科学,2015,35(1):179-189.
|
[9] |
Dechesne A,Musovic S,Palomo A,et al.Underestimation of ammonia-oxidizing bacteria abundance by amplification bias in amoA-targeted qPCR[J].Microbial biotechnology,2016,9:519-524.
|
[10] |
Wagner M,Roger A J,Flax J L,et al.Phylogeny of dissimilatory sulfite reductases supports an early origin of sulfate respiration[J].Journal of Bacteriology,1998,180(11):2975-2982.
|
[11] |
Joulian C,Ramsing N B,Ingvorsen K.Congruent phylogenies of most common small-subunit rRNA and dissimilatory sulfite reductase gene sequences retrieved from estuarine sediments[J].Applied and Environmental Microbiology,2001,67(7):3314-3318.
|
[12] |
Frank K L,Rogers D R,Olins H C,et al.Characterizing the distribution and rates of microbial sulfate reduction at Middle Valley hydrothermal vents[J].The ISME Journal,2013,7(7):1391-1401.
|
[13] |
Robador A,Jungbluth S P,Larowe D E,et al.Activity and phylogenetic diversity of sulfate-reducing microorganisms in low-temperature subsurface fluids within the upper oceanic crust[J].Frontiers in Microbiology,2015,5(748):748-761.
|
[14] |
Leloup J,Loy A,Knab N J,et al.Diversity and abundance of sulfate-reducing microorganisms in the sulfate and methane zones of a marine sediment,Black Sea[J].Environmental Microbiology,2007,9(1):131-142.
|
[15] |
Leloup J,Fossing H,Kohls K,et al.Sulfate-reducing bacteria in marine sediment (Aarhus Bay,Denmark):abundance and diversity related to geochemical zonation[J].Environmental Microbiology,2009,11(5):1278-1291.
|
[16] |
Colin Y,Goñi-Urriza M,Caumette P,et al.Combination of high throughput cultivation and dsrA sequencing for assessment of sulfate-reducing bacteria diversity in sediments[J].FEMS Microbiology Ecology,2013,83(1):26-37.
|
[17] |
Liu Y R,Zheng Y M,Zhang L M,et al.Linkage between community diversity of sulfate-reducing microorganisms and methylmercury concentration in paddy soil[J].Environmental Science and Pollution Research,2014,21(2):1339-1348.
|
[18] |
Müller A L,Kjeldsen K.U,Rattei T,et al.Phylogenetic and environmental diversity of DsrAB-type dissimilatory (bi) sulfite reductases[J].The ISME Journal,2015,9(5):1152-1165.
|
[19] |
李万超.东海泥质区沉积物部分化学成分的组成特征及其对环境因素的响应[D].青岛:中国海洋大学,2008.
|
[20] |
陈皓文,李培英,王波.浙江-闽北陆架沉积物硫酸盐还原菌及与生物地球化学因子关系的分析[J].环境科学学报,2000,20(4):478-452.
|
[21] |
Nie M,Meng W,Bo L.Effects of salt marsh invasion by Spartina alterniflora on sulfate-reducing bacteria in the Yangtze River estuary.China[J].Ecological Engineering,2009,35(12):1804-1808.
|
[22] |
Zhang Y,Zhen Y,Mi T,et al.Molecular characterization of sulfate-reducing bacteria community in surface sediments from the adjacent area of Changjiang Estuary[J].Journal of Ocean University of China,2016,15(1):107-116.
|
[23] |
He H,Zhen Y,Mi T,et al.Community composition and distribution of sulfate-and sulfite-reducing prokaryotes in sediments from the Changjiang estuary and adjacent East China Sea[J].Estuarine,Coastal and Shelf Science,2015,165:75-85.
|
[24] |
Liu J,Liu X,Wang M,et al.Bacterial and archaeal communities in sediments of the North Chinese Marginal Seas[J].Microbial Ecology,2015,70(1):105-117.
|
[25] |
秦蕴珊,赵一阳,陈丽蓉,等.东海地质[M].北京:科学出版社,1987.
|
[26] |
Dang H,Luan X W,Chen R,et al.Diversity,abundance and distribution of amoA-encoding archaea in deep-sea methane seep sediments of the Okhotsk Sea[J].FEMS Microbiology Ecology,2010,72(3):370-385.
|
[27] |
Geets J,Borremans B,Diels L,et al.DsrB gene-based DGGE for community and diversity surveys of sulfate-reducing bacteria[J].Journal of Microbiological Methods,2006,66(2):194-205.
|
[28] |
Klappenbach J A,Saxman P R,Cole J R,et al.rrndb:the ribosomal RNA operon copy number database[J].Nucleic Acids Research,2001,29(1):181-184.
|
[29] |
Klein M,Friedrich M,Roger A J,et al.Multiple lateral transfers of dissimilatory sulfite reductase genes between major lineages of sulfate-reducing prokaryotes[J].Journal of Bacteriology,2001,183(20):6028-6035.
|
[30] |
Wilms R,Sass H,Köpke B,et al.Methane and sulfate profiles within the subsurface of a tidal flat are reflected by the distribution of sulfate-reducing bacteria and methanogenic archaea[J].FEMS Microbiology Ecology,2007,59(3):611-621.
|
[31] |
Schippers A,Neretin L N.Quantification of microbial communities in near-surface and deeply buried marine sediments on the Peru continental margin using real-time PCR[J].Environmental Microbiology,2006,8(7):1251-1260.
|
[32] |
Blazejak A,Schippers A.Real-time PCR quantification and diversity analysis of the functional genes aprA and dsrA of sulfate-reducing prokaryotes in marine sediments of the Peru continental margin and the Black Sea[J].Frontiers in Microbiology,2011,2(1):253-264.
|
[33] |
Kondo R,Shigematsu K,Kawahara N,et al.Abundance of sulphate-reducing bacteria in fish farm sediments along the coast of Japan and South Korea[J].Fisheries Science,2012,78(1):123-131.
|
[34] |
Jiang L,Zheng Y,Peng X,et al.Vertical distribution and diversity of sulfate-reducing prokaryotes in the Pearl River estuarine sediments,Southern China[J].FEMS Microbiology Ecology,2009,70(2):249-262.
|
[35] |
Quillet L,Besaury L,Popova M,et al.Abundance,diversity and activity of sulfate-reducing prokaryotes in heavy metal-contaminated sediment from a salt marsh in the Medway Estuary (UK)[J].Marine Biotechnology,2012,14(3):363-381.
|
[36] |
Sahm K,MacGregor B J,Jørgensen B B,et al.Sulphate reduction and vertical distribution of sulphate-reducing bacteria quantified by rRNA slot-blot hybridization in a coastal marine sediment[J].Environmental Microbiology,1999,1:65-74.
|
[37] |
Sahm K,Knoblauch C,Amann R.Phylogenetic affiliation and quantification of psychrophilic sulfate-reducing isolates in marine Arctic sediments[J].Applied and Environmental Microbiology,1999,65(9):3976-3981.
|
[38] |
Ravenschlag K,Sahm K,Knoblauch C,et al.Community structure,cellular rRNA content,and activity of sulfate-reducing bacteria in marine arctic sediments[J].Applied and Environmental Microbiology,2000,66(8):3592-3602.
|
[39] |
Knittel K,Boetius A,Lemke A,et al.Activity,distribution,and diversity of sulfate reducers and other bacteria in sediments above gas hydrate (Cascadia Margin,Oregon)[J].Geomicrobiology Journal,2003,20(4):269-294.
|
[40] |
Gittel A,Mußmann M,Sass H,et al.Identity and abundance of active sulfate-reducing bacteria in deep tidal flat sediments determined by directed cultivation and CARD-FISH analysis[J].Environmental Microbiology,2008,10(10):2645-2658.
|
[41] |
王海丽,杨季芳.象山港海域硫酸盐还原菌的时空分布及其影响因素[J].生态学杂志,2011,30(12):2857-2862.
|
[42] |
Leloup J,Petit F,Boust D,et al.Dynamics of sulfate-reducing microorganisms (dsrAB genes) in two contrasting mudflats of the seine estuary (France)[J].Microbial Ecology,2004,50(3):307-314.
|
[43] |
Kondo R,Nedwell D B,Purdy K J,et al.Detection and enumeration of sulphate-reducing bacteria in estuarine sediments by competitive PCR[J].Geomicrobiology Journal,2004,21(3):145-157.
|
[44] |
Kawahara N,Shigematsu K,Miura S,et al.Distribution of sulfate-reducing bacteria in fish farm sediments on the coast of southern Fukui Prefecture,Japan[J].Plankton and Benthos Research,2007,3(1):42-45.
|
[45] |
金翔龙.东海海洋地质[M].北京:海洋出版社,1992:185-215.
|
[46] |
于培松,薛斌,潘建明,等.长江口和东海海域沉积物粒径对有机质分布的影响[J].海洋学研究,2011,29(3):202-208.
|
[47] |
Bissett A,Bowman J,Burke C.Bacterial diversity in organically-enriched fish farm sediments[J].FEMS Microbiology Ecology,2006,55(1):48-56.
|
[48] |
Kawahara N,Shigematsu K,Miyadai T.Comparison of bacterial communities in fish farm sediments along an organic enrichment gradient[J].Aquaculture,2009,287(1/2):107-113.
|
[49] |
高爱国,陈皓文,孙海青.北极沉积物中硫酸盐还原菌与生物地球化学要素的相关分析[J].环境科学学报,2003,23(5):619-624.
|
[50] |
张小李,刘海洪,陈开勋,等.硫酸盐还原菌生长规律的研究[J].西北大学学报,1999,29(5):397-402.
|
[51] |
Leloup J,Quillet L,Berthe T,et al.Diversity of the dsrAB (dissimilatory sulfite reductase) gene sequences retrieved from two contrasting mudflats of the Seine estuary,France.FEMS Microbiology Ecology,2005,55(2):230-238.
|
[52] |
Kondo R,Purdy K J,de Queiroz Silva S,et al.Spatial dynamics of sulphate-reducing bacterial compositions in sediment along a salinity gradient in a UK estuary[J].Microbes and Environments,2007,22(1):11-19.
|
[53] |
Sorokin,D.Y.,Kuenen,J.G.,Muyzer,G.The microbial sulfur cycle at extremely haloalkaline conditions of soda lakes[J].Frontiers in Microbiology,2011,2(44):111-117.
|
[54] |
Sorokin D Y,Abbas B,Tourova T P,et al.Sulfate-dependent acetate oxidation under extremely natron-alkaline conditions by syntrophic associations from hypersaline soda lakes[J].Microbiology,2014,160(4):723-732.
|
[1] |
任南琪,王爱杰,赵阳国.废水厌氧处理硫酸盐还原菌生态学[M].北京:科学出版社,2009:1.
|
[2] |
Pester M,Knorr K H,Friedrich M W,et al.Sulfate-reducing microorganisms in wetlands-fameless actors in carbon cycling and climate change[J].Frontiers in Microbiology,2012,3(72):1-19.
|
[3] |
Rabus R,Venceslau S S,Wöhlbrand L,et al.Chapter Two-A post-genomic view of the ecophysiology,catabolism and biotechnological relevance of sulphate-reducing prokaryotes[J].Advances in Microbial Physiology,2015,66:55-321.
|
[4] |
Jørgensen B B.Mineralization of organic matter in the sea bed-the role of sulphate reduction[J].Nature,1982,296:643-645.
|
[5] |
Molitor M,Dahl C,Molitor I,et al.A dissimilatory sirohaem-sulfite-reductase-type protein from the hyperthermophilic archaeon Pyrobaculum islandicum[J].Microbiology,1998,144(2):529-541.
|
[6] |
鲍林林,王晓燕,陈永娟,等.北运河沉积物中主要脱氮功能微生物的群落特征[J].中国环境科学,2016,36(5):1520-1529.
|
[7] |
洪晨,邢奕,司艳晓,等.铁矿区内重金属对土壤氨氧化微生物群落组成的影响[J].中国环境科学,2014,34(5):1212-1221.
|
[8] |
鲍林林,陈永娟,王晓燕.北运河沉积物中氨氧化微生物的群落特征[J].中国环境科学,2015,35(1):179-189.
|
[9] |
Dechesne A,Musovic S,Palomo A,et al.Underestimation of ammonia-oxidizing bacteria abundance by amplification bias in amoA-targeted qPCR[J].Microbial biotechnology,2016,9:519-524.
|
[10] |
Wagner M,Roger A J,Flax J L,et al.Phylogeny of dissimilatory sulfite reductases supports an early origin of sulfate respiration[J].Journal of Bacteriology,1998,180(11):2975-2982.
|
[11] |
Joulian C,Ramsing N B,Ingvorsen K.Congruent phylogenies of most common small-subunit rRNA and dissimilatory sulfite reductase gene sequences retrieved from estuarine sediments[J].Applied and Environmental Microbiology,2001,67(7):3314-3318.
|
[12] |
Frank K L,Rogers D R,Olins H C,et al.Characterizing the distribution and rates of microbial sulfate reduction at Middle Valley hydrothermal vents[J].The ISME Journal,2013,7(7):1391-1401.
|
[13] |
Robador A,Jungbluth S P,Larowe D E,et al.Activity and phylogenetic diversity of sulfate-reducing microorganisms in low-temperature subsurface fluids within the upper oceanic crust[J].Frontiers in Microbiology,2015,5(748):748-761.
|
[14] |
Leloup J,Loy A,Knab N J,et al.Diversity and abundance of sulfate-reducing microorganisms in the sulfate and methane zones of a marine sediment,Black Sea[J].Environmental Microbiology,2007,9(1):131-142.
|
[15] |
Leloup J,Fossing H,Kohls K,et al.Sulfate-reducing bacteria in marine sediment (Aarhus Bay,Denmark):abundance and diversity related to geochemical zonation[J].Environmental Microbiology,2009,11(5):1278-1291.
|
[16] |
Colin Y,Goñi-Urriza M,Caumette P,et al.Combination of high throughput cultivation and dsrA sequencing for assessment of sulfate-reducing bacteria diversity in sediments[J].FEMS Microbiology Ecology,2013,83(1):26-37.
|
[17] |
Liu Y R,Zheng Y M,Zhang L M,et al.Linkage between community diversity of sulfate-reducing microorganisms and methylmercury concentration in paddy soil[J].Environmental Science and Pollution Research,2014,21(2):1339-1348.
|
[18] |
Müller A L,Kjeldsen K.U,Rattei T,et al.Phylogenetic and environmental diversity of DsrAB-type dissimilatory (bi) sulfite reductases[J].The ISME Journal,2015,9(5):1152-1165.
|
[19] |
李万超.东海泥质区沉积物部分化学成分的组成特征及其对环境因素的响应[D].青岛:中国海洋大学,2008.
|
[20] |
陈皓文,李培英,王波.浙江-闽北陆架沉积物硫酸盐还原菌及与生物地球化学因子关系的分析[J].环境科学学报,2000,20(4):478-452.
|
[21] |
Nie M,Meng W,Bo L.Effects of salt marsh invasion by Spartina alterniflora on sulfate-reducing bacteria in the Yangtze River estuary.China[J].Ecological Engineering,2009,35(12):1804-1808.
|
[22] |
Zhang Y,Zhen Y,Mi T,et al.Molecular characterization of sulfate-reducing bacteria community in surface sediments from the adjacent area of Changjiang Estuary[J].Journal of Ocean University of China,2016,15(1):107-116.
|
[23] |
He H,Zhen Y,Mi T,et al.Community composition and distribution of sulfate-and sulfite-reducing prokaryotes in sediments from the Changjiang estuary and adjacent East China Sea[J].Estuarine,Coastal and Shelf Science,2015,165:75-85.
|
[24] |
Liu J,Liu X,Wang M,et al.Bacterial and archaeal communities in sediments of the North Chinese Marginal Seas[J].Microbial Ecology,2015,70(1):105-117.
|
[25] |
秦蕴珊,赵一阳,陈丽蓉,等.东海地质[M].北京:科学出版社,1987.
|
[26] |
Dang H,Luan X W,Chen R,et al.Diversity,abundance and distribution of amoA-encoding archaea in deep-sea methane seep sediments of the Okhotsk Sea[J].FEMS Microbiology Ecology,2010,72(3):370-385.
|
[27] |
Geets J,Borremans B,Diels L,et al.DsrB gene-based DGGE for community and diversity surveys of sulfate-reducing bacteria[J].Journal of Microbiological Methods,2006,66(2):194-205.
|
[28] |
Klappenbach J A,Saxman P R,Cole J R,et al.rrndb:the ribosomal RNA operon copy number database[J].Nucleic Acids Research,2001,29(1):181-184.
|
[29] |
Klein M,Friedrich M,Roger A J,et al.Multiple lateral transfers of dissimilatory sulfite reductase genes between major lineages of sulfate-reducing prokaryotes[J].Journal of Bacteriology,2001,183(20):6028-6035.
|
[30] |
Wilms R,Sass H,Köpke B,et al.Methane and sulfate profiles within the subsurface of a tidal flat are reflected by the distribution of sulfate-reducing bacteria and methanogenic archaea[J].FEMS Microbiology Ecology,2007,59(3):611-621.
|
[31] |
Schippers A,Neretin L N.Quantification of microbial communities in near-surface and deeply buried marine sediments on the Peru continental margin using real-time PCR[J].Environmental Microbiology,2006,8(7):1251-1260.
|
[32] |
Blazejak A,Schippers A.Real-time PCR quantification and diversity analysis of the functional genes aprA and dsrA of sulfate-reducing prokaryotes in marine sediments of the Peru continental margin and the Black Sea[J].Frontiers in Microbiology,2011,2(1):253-264.
|
[33] |
Kondo R,Shigematsu K,Kawahara N,et al.Abundance of sulphate-reducing bacteria in fish farm sediments along the coast of Japan and South Korea[J].Fisheries Science,2012,78(1):123-131.
|
[34] |
Jiang L,Zheng Y,Peng X,et al.Vertical distribution and diversity of sulfate-reducing prokaryotes in the Pearl River estuarine sediments,Southern China[J].FEMS Microbiology Ecology,2009,70(2):249-262.
|
[35] |
Quillet L,Besaury L,Popova M,et al.Abundance,diversity and activity of sulfate-reducing prokaryotes in heavy metal-contaminated sediment from a salt marsh in the Medway Estuary (UK)[J].Marine Biotechnology,2012,14(3):363-381.
|
[36] |
Sahm K,MacGregor B J,Jørgensen B B,et al.Sulphate reduction and vertical distribution of sulphate-reducing bacteria quantified by rRNA slot-blot hybridization in a coastal marine sediment[J].Environmental Microbiology,1999,1:65-74.
|
[37] |
Sahm K,Knoblauch C,Amann R.Phylogenetic affiliation and quantification of psychrophilic sulfate-reducing isolates in marine Arctic sediments[J].Applied and Environmental Microbiology,1999,65(9):3976-3981.
|
[38] |
Ravenschlag K,Sahm K,Knoblauch C,et al.Community structure,cellular rRNA content,and activity of sulfate-reducing bacteria in marine arctic sediments[J].Applied and Environmental Microbiology,2000,66(8):3592-3602.
|
[39] |
Knittel K,Boetius A,Lemke A,et al.Activity,distribution,and diversity of sulfate reducers and other bacteria in sediments above gas hydrate (Cascadia Margin,Oregon)[J].Geomicrobiology Journal,2003,20(4):269-294.
|
[40] |
Gittel A,Mußmann M,Sass H,et al.Identity and abundance of active sulfate-reducing bacteria in deep tidal flat sediments determined by directed cultivation and CARD-FISH analysis[J].Environmental Microbiology,2008,10(10):2645-2658.
|
[41] |
王海丽,杨季芳.象山港海域硫酸盐还原菌的时空分布及其影响因素[J].生态学杂志,2011,30(12):2857-2862.
|
[42] |
Leloup J,Petit F,Boust D,et al.Dynamics of sulfate-reducing microorganisms (dsrAB genes) in two contrasting mudflats of the seine estuary (France)[J].Microbial Ecology,2004,50(3):307-314.
|
[43] |
Kondo R,Nedwell D B,Purdy K J,et al.Detection and enumeration of sulphate-reducing bacteria in estuarine sediments by competitive PCR[J].Geomicrobiology Journal,2004,21(3):145-157.
|
[44] |
Kawahara N,Shigematsu K,Miura S,et al.Distribution of sulfate-reducing bacteria in fish farm sediments on the coast of southern Fukui Prefecture,Japan[J].Plankton and Benthos Research,2007,3(1):42-45.
|
[45] |
金翔龙.东海海洋地质[M].北京:海洋出版社,1992:185-215.
|
[46] |
于培松,薛斌,潘建明,等.长江口和东海海域沉积物粒径对有机质分布的影响[J].海洋学研究,2011,29(3):202-208.
|
[47] |
Bissett A,Bowman J,Burke C.Bacterial diversity in organically-enriched fish farm sediments[J].FEMS Microbiology Ecology,2006,55(1):48-56.
|
[48] |
Kawahara N,Shigematsu K,Miyadai T.Comparison of bacterial communities in fish farm sediments along an organic enrichment gradient[J].Aquaculture,2009,287(1/2):107-113.
|
[49] |
高爱国,陈皓文,孙海青.北极沉积物中硫酸盐还原菌与生物地球化学要素的相关分析[J].环境科学学报,2003,23(5):619-624.
|
[50] |
张小李,刘海洪,陈开勋,等.硫酸盐还原菌生长规律的研究[J].西北大学学报,1999,29(5):397-402.
|
[51] |
Leloup J,Quillet L,Berthe T,et al.Diversity of the dsrAB (dissimilatory sulfite reductase) gene sequences retrieved from two contrasting mudflats of the Seine estuary,France.FEMS Microbiology Ecology,2005,55(2):230-238.
|
[52] |
Kondo R,Purdy K J,de Queiroz Silva S,et al.Spatial dynamics of sulphate-reducing bacterial compositions in sediment along a salinity gradient in a UK estuary[J].Microbes and Environments,2007,22(1):11-19.
|
[53] |
Sorokin,D.Y.,Kuenen,J.G.,Muyzer,G.The microbial sulfur cycle at extremely haloalkaline conditions of soda lakes[J].Frontiers in Microbiology,2011,2(44):111-117.
|
[54] |
Sorokin D Y,Abbas B,Tourova T P,et al.Sulfate-dependent acetate oxidation under extremely natron-alkaline conditions by syntrophic associations from hypersaline soda lakes[J].Microbiology,2014,160(4):723-732.
|
|
|
|