|
|
Phytoplankton diversity effects on community biomass and temporal stability in Lake Nansihu |
TIAN Wang1, ZHANG Hua-yong1, WANG Zhong-yu1, ZHANG Jian2, MIAO Ming-sheng3, ZHAO Lei1 |
1. Research Center for Engineering Ecology and Nonlinear Science, North China Electric Power University, Beijing 102206, China;
2. School of Environmental Science and Engineering, Shandong University, Jinan 250100, China;
3. College of Life Science, Shandong Normal University, Jinan 250014, China |
|
|
Abstract The phytoplankton community of Lake Nansihu was investigated seasonally from 2011 to 2014. The effects of phytoplankton diversity (species richness and evenness) on both community biomass and temporal stability were analyzed. A total of 138 phytoplankton species belonging to 78 genera and 8 phyla were identified in the lake. Phytoplankton abundance ranged between 5.09×105/L and 6.95×106/L and its biomass varied from 0.44mg/L to 5.46mg/L in different seasons. In spring and winter when the temperature was low, phytoplankton biomass increased with increasing species richness, phytoplankton community with larger number of species was more productive. In summer when the temperature was high, there was a strong negative relationship between phytoplankton biomass and species richness, phytoplankton community with higher diversity had relatively lower biomass. The stability indices of Cyanophyta, Bacillariophyta and total phytoplankton were all unimodally related to phytoplankton species richness. However, the effects of phytoplankton evenness on the Cyanophyta, Chlorophyta, Bacillariophyta or total phytoplankton stability index were not significant (P>0.05). Results in this research indicated that the effects of phytoplankton diversity on community biomass and temporal stability were complex:species richness had a linear relationship with community biomass and influenced by seasonal variations, a unimodal relationship with temporal stability; evenness had no relationship with either community biomass or temporal stability.
|
Received: 10 May 2016
|
|
|
|
|
[1] |
张全国,张大勇.生物多样性与生态系统功能:最新的进展与动向[J]. 生物多样性, 2003,11(5):351-363.
|
[2] |
Giller P S, Hillebrand H, Berninger U G, et al. Biodiversity effects on ecosystem functioning:emerging issues and their experimental test in aquatic environments[J]. Oikos, 2004,104(3):423-436.
|
[3] |
曾庆飞,谷孝鸿,毛志刚,等.固城湖及上下游河道富营养化和浮游藻类现状[J]. 中国环境科学, 2012,32(8):1487-1494.
|
[4] |
秦伯强,高光,朱广伟,等.湖泊富营养化及其生态系统响应[J]. 科学通报, 2013,58(10):855-864.
|
[5] |
王华,杨树平,房晟忠,等.滇池浮游植物群落特征及与环境因子的典范对应分析[J]. 中国环境科学, 2016,36(2):544-552.
|
[6] |
李俊龙,郑丙辉,张铃松,等.中国主要河口海湾富营养化特征及差异分析[J]. 中国环境科学, 2016,36(2):506-516.
|
[7] |
李佐琛,段洪涛,张玉超,等.藻源型湖泛发生过程水色变化规律[J]. 中国环境科学, 2015,35(2):524-532.
|
[8] |
Weyhenmeyer G A, Peter H, Willen E. Shifts in phytoplankton species richness and biomass along a latitudinal gradient- consequences for relationships between biodiversity and ecosystem functioning[J]. Freshwater Biology, 2013,58(3):612- 623.
|
[9] |
吴雅丽,许海,杨桂军,等.太湖春季藻类生长的磷营养盐阈值研究[J]. 中国环境科学, 2013,33(9):1622-1629.
|
[10] |
Tilman D, Wedin D, Knops J. Productivity and sustainability influenced by biodiversity in grassland ecosystems[J]. Nature, 1996,379(6567):718-720.
|
[11] |
Loreau M, Naeem S, Inchausti P, et al. Biodiversity and ecosystem functioning:current knowledge and future challenges[J]. Science, 2001,294(5543):804-808.
|
[12] |
Thibaut L M, Connolly S R. Understanding diversity-stability relationships:towards a unified model of portfolio effects[J]. Ecology Letters, 2013,16(2):140-150.
|
[13] |
McGrady-Steed J, Harris P M, Morin P J. Biodiversity regulates ecosystem predictability[J]. Nature, 1997,390(6656):162-165.
|
[14] |
Schmidtke A, Gaedke U, Weithoff G. A mechanistic basis for underyielding in phytoplankton communities[J]. Ecology, 2010, 91(1):212-221.
|
[15] |
Gamfeldt L, Hillebrand H, Jonsson P R. Species richness changes across two trophic levels simultaneously affect prey and consumer biomass[J]. Ecology Letters, 2005,8(7):696-703.
|
[16] |
Weis J J, Cardinale B J, Forshay K J, et al. Effects of species diversity on community biomass production change over the course of succession[J]. Ecology, 2007,88(4):929-939.
|
[17] |
Zimmerman E K, Cardinale B J. Is the relationship between algal diversity and biomass in North American lakes consistent with biodiversity experiments[J]. Oikos, 2014,123(3):267-278.
|
[18] |
Vallina S M, Follows M J, Dutkiewicz S, et al. Global relationship between phytoplankton diversity and productivity in the ocean[J]. Nature Communications, 2014,5(4299):1-10.
|
[19] |
Steudel B, Hector A, Friedl T, et al. Biodiversity effects on ecosystem functioning change along environmental stress gradients[J]. Ecology Letters, 2012,15(12):1397-1405.
|
[20] |
Gonzalez A, Descamps-Julien B. Population and community variability in randomly fluctuating environments[J]. Oikos 2004, 106(1):105-116.
|
[21] |
Ptacnik R, Solimini A G, Andersen T, et al. Diversity predicts stability and resource use efficiency in natural phytoplankton communities[J]. Proceedings of the National Academy of Science, 2008,105(13):5134-5138.
|
[22] |
Filstrup C T, Hillebrand H, Heathcote A J, et al. Cyanobacteria dominance influences resource use efficiency and community turnover in phytoplankton and zooplankton communities[J]. Ecology Letters, 2014,17(4):464-474.
|
[23] |
钱奎梅,刘霞,段明,等.鄱阳湖蓝藻分布及其影响因素分析[J]. 中国环境科学, 2016,36(1):261-267.
|
[24] |
Ptacnik R, Moorthi S D, Hillebrand H. Hutchinson reversed, or why there need to be so many species[J]. Advances in Ecological Research, 2010,43:1-43.
|
[25] |
舒凤月,刘玉配,赵颖,等.南四湖水体氮、磷营养盐时空分布特征及营养状态评价[J]. 环境科学, 2012,33(11):3748-3752.
|
[26] |
张祖陆,辛良杰,梁春玲.近50年来南四湖湿地水文特征及其生态系统的演化过程分析[J]. 地理研究, 2007,26(5):957-966.
|
[27] |
巩俊霞,段登选,王志忠,等.南四湖浮游生物调查分析[J]. 长江大学学报自然科学版:农学卷, 2010,7(1):39-42.
|
[28] |
武周虎,张可,金玲仁,等.南四湖水质空间分布特征分析与改善效果评估[J]. 水资源保护, 2012,28(6):1-7.
|
[29] |
HJ/T 91-2002地表水和污水监测技术规范[S].
|
[30] |
胡鸿钧,魏印心.中国淡水藻类系统、分类及生态[M]. 北京:科学出版社, 2006.
|
[31] |
Arhonditsis G B, Winder M, Brett M T, et al. Patterns and mechanisms of phytoplankton variability in Lake Washington (USA)[J]. Water Research, 2004,38(18):4013-4027.
|
[32] |
孙军,刘东艳,钱树本.浮游植物生物量研究Ⅰ.浮游植物生物量细胞体积转化法[J]. 海洋学报, 1999,22(2):75-85.
|
[33] |
Pielou E C. The measurement of diversity in different types of biological collections[J]. Journal of Theoretical Biology, 1966, 13(1):131-144.
|
[34] |
王海东,张璐璐,朱志红.刈割、施肥对高寒草甸物种多样性与生态系统功能关系的影响及群落稳定性机制[J]. 植物生态学报, 2013,37(4):279-295.
|
[35] |
张全国,张大勇.生产力、可靠度与物种多样性:微宇宙实验研究[J]. 生物多样性, 2002,10(2):135-142.
|
[36] |
Isbell F I, Polley H W, Wilsey B J. Biodiversity, productivity and the temporal stability of productivity:patterns and processes[J]. Ecology Letters, 2009,12(5):443-451.
|
[37] |
Donohue I, Petchey O L, Montoya J M, et al. On the dimensionality of ecological stability[J]. Ecology Letters, 2013, 16(4):421-429.
|
[38] |
Bond E M, Chase J M. Biodiversity and ecosystem functioning at local and regional spatial scales[J]. Ecology Letters, 2002,5(4):467-470.
|
[39] |
Wittebolle L, Marzorati M, Clement L, et al. Initial community evenness favours functionality under selective stress[J]. Nature, 2009,458:623-626.
|
[40] |
许海,秦伯强,朱广伟.太湖不同湖区夏季蓝藻生长的营养盐限制研究[J]. 中国环境科学, 2012,32(12):2230-2236.
|
[41] |
田丰,钱新,陈众.调水对巢湖浮游植物群落演替模式的影响[J]. 中国环境科学, 2012,32(12):2224-2229.
|
[42] |
叶琳琳,史小丽,张民,等.巢湖夏季水华期间水体中溶解性碳水化合物的研究[J]. 中国环境科学, 2012,32(2):318-323.
|
|
|
|