|
|
Cloud optical properties using ground-based measurements of zenith radiance in Xianghe |
WANG Jing, XU Xiao-feng, XU Dan |
Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science and Technology, Nanjing 210044, China |
|
|
Abstract A new method for retrieving cloud optical depth (COD) using AERONET cloud mode is introduced. Using statistical analysis for temporal variation characteristics of cloud optical properties at Xianghe site based on the COD data obtained by this algorithm from January 2011 to June 2012, we find that there was significant daily variation COD in zenith direction and the number of occurrence of non-precipitating clouds (Num). Comparing the COD data retrieved by ground-based remote sensing and MODIS satellite under different sky conditions (broken clouds and overcast cases), the two data sets fit very well with high correlation. In these two cases, the average values of MODIS COD are 10.8 and 9.4, smaller than those of ground observation. COD had a decreasing trend in the morning and dusk, and a increasing trend at noon and in the afternoon. Num day curve was "bimodal" and peaked in the morning and afternoon, respectively, with a minimum around noon. The seasonal average COD was in the order of autumn> spring> winter> summer, each season had more than 65% of the COD concentrated in the range of 10~40; summer observations showed the maximum number of days, minimum change. At least a few days in the winter observations, it showed the maximum change. The observed days or change were consistent in spring and autumn. A linear regression analysis for COD and AOD time series was used at Xianghe site, and a significance test was carried out, showing that observed frequency of COD and fine mode AOD had a strong positive correlation.
|
Received: 18 July 2016
|
|
|
|
|
[1] |
中国气象局.地面气象观测规范 [M]. 北京:气象出版社, 2003:11.
|
[2] |
张小曳,廖 宏,王芬娟.对IPCC第五次评估报告评估气溶胶-云对气候变化影响与响应结论的解读 [J]. 气候变化研究进展, 2014,10(1):37-39.
|
[3] |
Mace G G, Benson S, Sonntag K L, et al. Cloud radiative forcing at the Atmospheric Radiation Measurement Program Climate Research Facility: 1.Technique,validation,and comparison to satellite-derived diagnostic quantities [J]. Journal of Geophysical Research: Atmospheres (1984-2012), 2006,111(D11),doi:10. 1029/2005JD005921.
|
[4] |
陈英英,周毓荃,毛节泰,等.2007.利用FY-2C静止卫星资料反演云粒子有效半径的试验研究 [J]. 气象, 2007,33(4):29-34.
|
[5] |
张思勃,官 莉,李依鸿,等.云区卫星微波通道亮度温度的数值模拟 [J]. 热带气象学报, 2015,31(5):664-672.
|
[6] |
陈勇航,白鸿涛,黄建平,等.西北典型地域云对地气系统的辐射强迫研究 [J]. 中国环境科学, 2008,28(2):97-101.
|
[7] |
叶 晶,李万彪,严 卫.利用MODIS数据反演多层云光学厚度和有效粒子半径 [J].气象学报, 2009,67(4):613-622.
|
[8] |
Stokes G M, S E Schwartz. The Atmospheric Radiation Measurement (ARM) Program: Programmatic background and design of the cloud and radiation test bed [J]. Bull. Am. Meteorol. Soc., 1994,75(7):1201-1221.
|
[9] |
邱玉珺,杨会文,倪 婷,等.基于美国AMF寿县观测的云特性研究 [J]. 大气科学学报, 2012,35(1):80-86.
|
[10] |
陆春松,刘延刚,牛生杰.淡积云中夹卷混合机制的参数化及二次混合的影响 [J]. 科学通报, 2014,59(10):944.
|
[11] |
Illingworth A J, Hogan R J, O'connor E J, et al. Cloudnet: Continuous evaluation of cloud profiles in seven operational models using ground-based observations [J]. Bulletin of the American Meteorological Society, 2007,88(6):883-898.
|
[12] |
周文君,牛生杰,许潇锋.全天空成像仪云量计算方法的改进 [J]. 大气科学学报, 2014,37(3):289-296.
|
[13] |
刘莹莹,牛生杰,封秋娟,等.一次积层混合云的形成过程和微物理观测 [J]. 大气科学学报, 2012,35(2):186-196.
|
[14] |
岳岩裕,牛生杰,桑建人,等.干旱区云凝结核分布及其影响因子的观测研究 [J]. 中国环境科学, 2010,30(5):593-598.
|
[15] |
邱金桓.从太阳总辐射信息反演云的光学厚度 [J]. 大气科学, 1996,20(1):12-21.
|
[16] |
王 越,吕达仁,霍 娟,等.利用透射太阳辐射反演云光学厚度及有效粒子半径:方法研究 [J]. 自然科学进展, 2006,16(7): 850-858.
|
[17] |
王天河.利用MFRSR反演西北混合相和沙尘云光学及物理特性的研究 [D]. 兰州:兰州大学, 2009:1-11.
|
[18] |
Marshak A, Y Knyazikhin, W J Wiscombe, et al. Cloud, vegetation interaction:Use of normalized difference cloud index for estimation of cloud optical thickness [J]. Geophys. Res. Lett., 2000,27(12):1695-1698.
|
[19] |
Barker H W, A Marshak. Inferring optical depth of broken clouds above green vegetation using surface solar radiometric measurements [J]. J. Atmos. Sci., 2001,58(20):2989-3006.
|
[20] |
Marshak A, Y Knyazikhin, K D Evans, et al. The “RED versus NIR” plane to retrieve broken-cloud optical depth from ground-based measurement [J]. J. Atmos. Sci, 2004,61(15):1911-1925.
|
[21] |
Chiu J C, C H Huang, A Marshak, et al. Cloud optical depth retrievals from the Aerosol Robotic Network (AERONET) cloud mode observations [J]. Journal of Geophysical Research, 2010, 115(D14):P.D14202.
|
[22] |
吕 睿,于兴娜,沈 丽,等.北京春季大气气溶胶光学特性研究 [J]. 中国环境科学, 2016,36(6):1660-1668.
|
[23] |
张志薇,王宏斌,张 镭,等.中国3个AERONET站点气溶胶微物理特性分析及比较 [J]. 中国环境科学, 2014,34(8):1927-1937.
|
[24] |
刘建军.长三角太湖站点云和气溶胶辐射特性的地基遥感研究 [D]. 南京:南京信息工程大学, 2012:9-11.
|
[25] |
Box M A, Gerstl S A W, Simmer C. Application of the adjoint formulation to the calculation of atmospheric radiative effects [J]. Beitr. Phys. Atmos., 1988,61(4):303-311.
|
[26] |
Stamnes K, S C Tsay, W J Wiscombe, et al. Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media [J]. Appl. Opt., 1988,27(12):2502-2512.
|
[27] |
毛节泰,李成才,张军华,等.MODIS卫星遥感北京地区气溶胶光学厚度及与地面光度计遥感的对比 [J]. 应用气象学报, 2002,13(U01):127-135.
|
[28] |
陈爱军,梁学伟,卞林根,等.青藏高原MODIS地表反照率反演质量分析 [J]. 高原气象, 2016,35(2):277-284.
|
[29] |
Chiu J C, Marshak A, Knyazikhin Y, et al. Remote sensing of cloud properties using ground-based measurements of zenith radiance [J]. Journal of Geophysical Research:Atmospheres (1984~2012), 2006,111(D16),doi:10.1029/2005JD006843.
|
[30] |
杨 娟.利用MODSI卫星资料分析北京站点地表反照率的时空分布及变化特征 [D]. 南京:南京信息工程大学, 2012:26-29.
|
[31] |
牛生杰,陆春松,吕晶晶,等.近年来中国雾研究进展 [J]. 气象科技进展, 2016,6(2):6-19.
|
[32] |
于兴娜,李新妹,登增然登,等.北京雾霾天气期间气溶胶光学特性 [J]. 环境科学, 2012,33(4):1057-1062.
|
|
|
|