|
|
Electricity generation and COD removal of MFC using mustard tuber wastewater as substrate in multi-cycle running |
FU Guo-kai, ZHANG Lin-fang, GUO Fei, LIU Jin, ZHANG Zhi |
Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China |
|
|
Abstract Mustard tuber wastewater was utilized in a dual-chamber microbial fuel cell (MFC) to achieve simultaneous bio-energy recovery and pollutant removal. The multi-cycle performance of MFC using high strength mustard tuber wastewater were in stable batch operation with a 1000Ω external resistor. The maximum power density of 7.44W/m3were observed in the fifth cycle, and the according internal resistance, open circuit voltage, COD removal and columbic efficiency were 88Ω, 746mV, (65±2.5)% and (19.3±1)%, respectively. COD removal continuously increased to (73 ±3.3)%, the maximum rate, in the eighth cycle after start-up; meanwhile, the rapid increase of columbic efficiency till (19.3±1)% in the fifth cycle were followed by the slow declination. PH values of the anode effluent continuously decreased during the operation leading to the acidification. A sustainable power generation was able to be achieved with a 500Ω external resistor. An overshoot was also observed in power curves in the multi-cycle operation.
|
Received: 04 August 2016
|
|
|
|
|
[1] |
Chai H X, Kang W. Influence of biofilm density on anaerobic sequencing batch biofilm reactor treating mustard tuber wastewater[J]. Applied Biochemistry and Biotechnology, 2012, 168(6):1664-1671.
|
[2] |
McCary P L, Bae J, Kim J. Domestic wastewater treatment as a net energy producer-can this be achieved[J] Environment Science and Technology, 2011,45(17):7100-7106.
|
[3] |
Kaewkannetra P, Chiwes W, Chiu T Y. Treatment of cassava mill wastewater and production of electricity through microbial fuel cell technology[J]. Fuel, 2011,90:2746-2750.
|
[4] |
Kim K Y, Yang W L, Logan B E. Impact of electrode configurations on retention time and domestic wastewater treatment efficiency using microbial fuel cells[J]. Water Research, 2015,80:41-46.
|
[5] |
Min B, Logan B E. Continuous electricity generation from domestic wastewater and organic substrates in a flat plate microbial fuel cell[J]. Environment Science and Technology, 2004,38(21):5809-5814.
|
[6] |
Ge Z, Ping Q Y, Xiao L, et al. Reducing effluent discharge and recovering bioenergy in an osmotic microbial fuel cell treating domestic wastewater[J]. Desalination, 2012,312:52-59.
|
[7] |
Ghadge A N, Jadhav D A, Pradhan H, et al. Enhancing waste activated sludge digestion and power production using hypochlorite as catholyte in clayware microbial fuel cell[J]. Bioresource Technology, 2015,182:225-231.
|
[8] |
Wang Z W, Ma J X, Xu Y L, et al. Power production from different types of sewage sludge using microbial fuel cells:A comparative study with energetic and microbiological perspectives[J]. Journal of Power Sources, 2013,235:280-288.
|
[9] |
Zhang G D, Zhao Q L, Jiao Y, et al. Efficient electricity generation from sewage sludge using biocathode microbial fuel cell[J]. Water Research, 2012,46(1):43-52.
|
[10] |
郑 峣,刘志华,李小明,等.剩余污泥生物燃料电池输出功率密度的影响因素[J]. 中国环境科学, 2010,30(1):64-68.
|
[11] |
刘志华,李小明,方 丽,等.污泥为燃料的微生物燃料电池运行特性研究[J]. 中国环境科学, 2012,32(2):268-273.
|
[12] |
Min B, Kim J R, Oh S E, et al. Electricity generation from swine wastewater using microbial fuel cells[J]. Water Research, 2005, 39(20):4961-4968.
|
[13] |
Ichihashi O, Hirooka K. Removal and recovery of phosphorus as struvite from swine wastewater using microbial fuel cell[J]. Bioresource Technology, 2012,114:303-307.
|
[14] |
Li H, Ni J R. Treatment of wastewater from Dioscorea zingiberensis tubers used for producing steroid hormones in a microbial fuel cell[J]. Bioresource Technology, 2011,102:2731-2735.
|
[15] |
Liu R, Gao C Y, Zhao Y G, et al. Biological treatment of steroidal drug industrial effluent and electricity generation in the microbial fuel cell[J]. Bioresource Technology, 2012,123:86-91.
|
[16] |
Puig S, Serra M, Coma M, et al. Microbial fuel cell application in landfill leachate treatment[J]. Journal of Hazardous Materials, 2011,102:10886-10891.
|
[17] |
罗 勇,骆海萍,覃邦余,等.盐度对MFC产电及其微生物群落的影响[J]. 中国环境科学, 2013,33(5):832-837.
|
[18] |
Lefebvre O, Tan Z, harkwal S, et al. Effect of increasing anodic NaCl concentration on microbial fuel cell performance[J]. Bioresource Technology, 2012,112:336-340.
|
[19] |
Guo F, Fu G K, Zhang Z. Mustard tuber wastewater treatment and simultaneous electricity generation using microbial fuel cells[J]. Bioresource Technology, 2013.136:425-30.
|
[20] |
Tremouli A, Intzes A, Intzes P, et al. Effect of periodic complete anolyte replacement on the long term performance of a four air cathodes single chamber microbial fuel cell[J]. Journal of Applied Electrochemistry, 2015,45(7):755-763.
|
[21] |
Zhang G D, Wang K, Zhao Q L, et al. Effect of cathode types on long-term performance and anode bacterial communities in microbial fuel cells[J]. Bioresource Technology, 2012,118:249-256.
|
[22] |
He Z, Angenent L T. Application of bacterial biocathodes in microbial fuel cells[J]. Electroanalysis, 2006,18:2009-2015.
|
[23] |
Baranitharan E, Khan M R, Prasad D M R, et al. Effect of biofilm formation on the performance of microbial fuel cell for the treatment of palm oil mill effluent[J]. Bioprocess and Biosystems Engineering, 2015,38(1):15-24.
|
[24] |
Bond D R, Lovley D R. Electricity production by Geobacter sulfurreducens attached to electrodes[J]. Applied and Environmental Microbiology, 2003,69(3):1548-1555.
|
[25] |
Zhang G D, Zhao Q L, Jiao Y, et al. Long-term operation of manure- microbial fuel cell[J]. Bioresource Technology, 2015, 180:365-369.
|
[26] |
Kiely P D, Rader G, Regan J M, et al. Long-term cathode performance and the microbial communities that develop in microbial fuel cells fed different fermentation endproducts[J]. Bioresource Technology, 2011,102(1):361-366.
|
[27] |
詹亚力,张佩佩,闫光绪,等.无中间休无膜微生物燃料电池的构建与运行[J]. 高等化学工程学报, 2008,22(1):177-181.
|
[28] |
Zhuang L, Yuan Y, Wang Y Q, et al. Long-term evaluation of a 10-liter serpentine-type microbial fuel cell stack treating brewery wastewater[J]. Bioresource Technology, 2012,123:406-412.
|
[29] |
Logan B E, Regan J M. Microbial fuel cells-Challenges and Applications[J]. Environment Science and Technology, 2006, 40(17):5172-5180.
|
[30] |
Menicucci J, Beyenal H, Marsili E, et al. Procedure for determining maximum sustainable power generated by microbial fuel cells[J]. Environment Science and Technology, 2016,40:1062-1068.
|
[31] |
Mohan S V, Mohanakrishna G, Srikanth S, et al. Harnessing of bioelectricity in microbial fuel cell (MFC) employing aerated cathode through anaerobic treatment of chemical wastewater using selectively enriched hydrogen producing mixed consortia[J]. Fuel, 2008,87(12):2667-2676.
|
[32] |
Watson V J, Logan B E. Analysis of polarization methods for elimination of power overshoot in microbial fuel cells[J]. Electrochemistry Communications, 2011,13(1):54-56.
|
[33] |
Ieropoulos I, Winfield J, Greenman J. Effects of flow-rate, inoculum and time on the internal resistance of microbial fuel cells[J]. Bioresource Technology, 2010,101:3520-3525.
|
|
|
|