|
|
ARIMA-SVM combination prediction of PM2.5 concentration in Shenyang |
SONG Guo-jun1, GUO Xiao-dan1, YANG Xiao1, LIU Shuai2 |
1. School of Environment, Renmin University of China, Beijing 100872, China;
2. Agricultural Management Institute of the Ministry of Agriculture and Rural Affairs, Beijing 102208, China |
|
|
Abstract Firstly, meteorological types of heating period and non-heating period were classified using the method of regression tree classification, and meteorological types which are likely to cause severe pollution were identified. Secondly, the daily mean value prediction model of PM2.5 concentration of different meteorological types was established using the combination of Autoregressive Integrated Moving Average Model and Support Vector Machine (ARIMA+SVM), which takes the emission of pollution sources as independent variables. In this paper daily mean PM2.5 concentration of 9environmental monitoring points with continuous data in Shenyang during Jan 2013 to June 2017 was analysed. The results show that, compared with ordinary machine learning model without weather classification, the prediction of daily mean PM2.5 concentration using ARIMA+SVM combined model based on meteorological classification has a better agreement with actual value, and its ability to identify the peak and valley values is much stronger. In heating and non-heating period, this combined model has the advantages of lower average error and higher prediction accuracy.
|
Received: 04 April 2018
|
|
|
|
|
[1] |
Tao J, Zhang L M, Zhang Z S, et al. Control of PM2.5 in Guangzhou during the 16th Asian Games period:Implication for hazy weather prevention[J]. Science of the Total Environment, 2015,508:57-66.
|
[2] |
孙宝磊,孙暠,张朝能,等.基于BP神经网络的大气污染物浓度预测[J]. 环境科学学报, 2017,37(5):1864-1871.
|
[3] |
薛文博,付飞,王金南,等.中国PM2.5跨区域传输特征数值模拟研究[J]. 中国环境科学, 2014,34(6):1361-1368.
|
[4] |
雷孝恩,韩志伟,张美根,等.城市空气污染数值预报模式系统[M]. 北京:气象出版社, 1998:15-18.
|
[5] |
张艺耀,苗冠鸿,闫剑诗,等.影响PM2.5因素的多元统计分析与预测[J]. 资源节约与环保, 2013,(11):135-136.
|
[6] |
尹建光,彭飞,谢连科,等.基于小波分解与自适应多级残差修正的最小二乘支持向量回归预测模型的PM2.5浓度预测研究[J/OL]. 环境科学学报:1-15[2018-03-13].https://doi.org/10.13671/j.hjkxxb.2018.0093.
|
[7] |
谢超,马民涛,于肖肖.多种神经网络在华北西部区域城市空气质量预测中的应用[J]. 环境工程学报, 2015,9(12):6005-6009.
|
[8] |
黄思,唐晓,徐文帅,等.利用多模式集合和多元线性回归改进北京PM10预报[J]. 环境科学学报, 2015,35(1):56-64.
|
[9] |
陈亚玲,赵智杰.基于小波变换与传统时间序列模型的臭氧浓度多步预测[J]. 环境科学学报, 2013,33(2):339-345.
|
[10] |
陈军,高岩,张烨培,等.PM2.5扩散模型及预测研究[J]. 数学的实践与认识, 2014,44(15):16-27.
|
[11] |
周丽,徐祥德,丁国安,等.北京地区气溶胶PM2.5粒子浓度的相关因子及其估算模型[J]. 气象学报, 2003,61(6):761-768.
|
[12] |
王黎明,吴香华,赵天良,等.基于距离相关系数和支持向量机回归的PM2.5浓度滚动统计预报方案[J]. 环境科学学报, 2017,37(4):1268-1276.
|
[13] |
李龙,马磊,贺建峰,等.基于特征向量的最小二乘支持向量机PM2.5浓度预测模型[J]. 计算机应用, 2014,34(8):2212-2216.
|
[14] |
胡玉筱,段显明.基于高斯烟羽和多元线性回归模型的PM2.5扩散和预测研究[J]. 干旱区资源与环境, 2015,29(6):86-92.
|
[15] |
Tai A P K, Mickley L J, Jacob D J. Correlations between fine particulate matter PM2.5 and meteorological variables in the United States:Implications for the sensitivity of PM2.5 to climate change[J]. Atmospheric Environment, 2010,44:3976-3984.
|
[16] |
Pateraki S, Asimakopoulos D N, Flocas H A, et al. The role of meteorology on different sized aerosol fractions PM10, PM2.5 PM2.5-10[J]. Science of the Total Environment, 2012,419:124-135.
|
[17] |
罗新兰,刘源.沈阳地区相对湿度与PM2.5浓度对能见度的影响分析[J]. 科学技术与工程, 2017,17(13):115-119.
|
[18] |
杨欣,陈义珍,刘厚凤,等.北京2013年1月连续强霾过程的污染特征及成因分析[J]. 中国环境科学, 2014,34(2):282-288.
|
[19] |
曾静,王美娥,张红星.北京市夏秋季大气PM2.5浓度与气象要素的相关性[J]. 应用生态学报, 2014,25(9):2695-2699.
|
[20] |
王嫣然,张学霞,赵静瑶,等.北京地区不同季节PM2.5和PM10浓度对地面气象因素的响应[J]. 中国环境监测, 2017,33(2):34-41.
|
[21] |
朱倩茹,刘永红,徐伟嘉,等.广州PM2.5污染特征及影响因素分析,中国环境监测, 2013,29(2):15-21.
|
[22] |
严文莲,周德平,王扬峰,等.沈阳冬夏季可吸入颗粒物浓度及尺度谱分布特征[J]. 应用气象学报, 2008,19(4):435-443.
|
[23] |
付桂琴,张杏敏,尤凤春,等.气象条件对石家庄PM2.5浓度的影响分析[J]. 干旱气象, 2016,34(2):349-455.
|
[24] |
曾乃晖,袁艳平,孙亮亮,等.基于聚类分析法的空气源热泵辅助太阳能热水系统气象分类研究[J]. 太阳能学报, 2017,38(11):3067-3076.
|
[25] |
姜明辉,王欢,王雅林.分类树在个人信用评估中的应用[J]. 商业研究, 2003,(21):86-88.
|
[26] |
傅传喜,马文军,梁建华,等.高血压危险因素logistic回归与分类树分析[J]. 疾病控制杂志, 2006,10(3):256-259.
|
[27] |
杨敏,丁剑,王炜.基于ARIMA-SVM模型的快速公交停站时间组合预测方法[J]. 东南大学学报(自然科学版), 2016,46(3):651-656.
|
[28] |
刘杰,杨鹏,吕文生,等.模糊时序与支持向量机建模相结合的PM2.5质量浓度预测[J]. 北京科技大学学报, 2014,36(12):1694-1702.
|
[29] |
谢骁旭,袁兆康.基于R的江西省肺结核发病率ARIMA-SVM组合预测模型[J]. 中国卫生统计, 2015,32(1):160-162.
|
[30] |
王佳敏,张红燕.基于ARIMA-SVM组合模型的移动通信用户数预测[J]. 计算机时代, 2014,(9):12-15+17.
|
[31] |
程昌品,陈强,姜永生.基于ARIMA-SVM组合模型的股票价格预测[J]. 计算机仿真, 2012,29(6):343-346.
|
[32] |
李晓岚,马雁军,王扬锋,等.基于CUACE系统沈阳地区春季空气质量预报的校验及修正[J]. 气象与环境学报, 2016,32(6):10-18.
|
|
|
|