|
|
Air quality impacts of power plant emissions in Hainan Province, 2015 |
KAN Hui1, BO Xin2, QU Jia-Bao2,3, YANG Chao-Xu4, WU Peng-Cheng5, TIAN Fei6, MO Hua2, ZHAO Xiao-Hong2, ZHOU Xue-Shuang7 |
1. Academy of Environmental Planning & Design, Co., Ltd., Nanjing University, Nanjing 210093, China;
2. The Appraisal Center for Environment and Engineering, Ministry of Environmental Protection, Beijing 100012, China;
3. School of Science and Technology of Environmental, HeBei University of Science and Technology, Shijiazhuang 050000, China;
4. College of Resources and Environmental Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China;
5. Chinese Academy for Environmental Planning, Beijing 100012, China;
6. Shandong Academy of Enviromental Science, Jinan 250013, China;
7. Department of Ecology and Environmental Protection of Hainan Province, Haikou 570100, China |
|
|
Abstract Based on the continuous emission monitoring systems (CEMS), environmental statistics, pollutant discharge permit and emission inventory of power plants in Hainan Province in 2015, the difference of pollutant emissions from power plants in Hainan under different methods was analyzed, and the variation rule of power plants emissions was acquired. In this paper, three situations including current situation, pollutant discharge permit situation and ultra-low emission situation were considered, and impacts of power plants on the air quality of Hainan province under three situations were simulated using CALPUFF model. The results showed that the emissions of various pollutants from power plants vary greatly under different statistical methods, and the maximum difference can reach 5.65times. In the time dimension, the monthly distribution of pollutant emissions from thermal power industry was relatively stable ranging from 7% to 10% and 24-hour fluctuation was characterized by "two peaks and two valleys". In terms of air quality, the concentration distribution of SO2, NOx, PM2.5 and PM10 generally showed a trend of high in west and low in east. Under current situation, the impacts of power plants on the average of annual concentration of each pollutant were SO2 0.001~0.015μg/m3、NOx 0~0.01μg/m3、PM10 0.001~0.006μg/m3、PM2.5 0~0.003μg/m3, and most of the highest concentration occurred in Dongfang and Lingao. The degree of impact of power plants on the atmospheric environment was permit > current > ultra-low. When the pollutant discharge permit is implemented, the annual average concentration of PM10 and NOx emitted from power plants increases by 50% and 38%, respectively, compared with the current situation. After the full implementation of ultra-low emission, there is a significant improvement in the air quality, with the annual average concentration of SO2 and PM2.5 for each city reduced by 57% and 69%, respectively, compared with the current situation.
|
Received: 30 May 2018
|
|
|
|
|
[1] |
史文峥,杨萌萌,张绪辉,等.燃煤电厂超低排放技术路线与协同脱除[J]. 中国电机工程学报, 2016,36(16):4308-4318. Shi W Z, Yang M M, Zhang X H, et al. Ultra-low emission technology route and synergistic removal of coal-fired power plants[J]. Chinese Journal of Electrical Engineering, 2016,36(16):4308-4318.
|
[2] |
朱法华,王圣.煤电大气污染物超低排放技术集成与建议[J]. 环境影响评价, 2014,(5):25-29. Zhu F H, Wang S. Integration and suggestion of ultra-low emission technology for coal-fired power plants air pollutants[J]. Environmental Impact Assessment, 2014,(5):25-29.
|
[3] |
姜鑫民,张嵛斌.广东省燃煤电厂超低排放减排潜力及其经济效益分析[J]. 中国能源, 2016,38(3):25-28. Jiang X M, Zhang Y B. Analysis on the potential of ultra-low emission reduction and its economic benefits of coal-fired power plants in Guangdong province[J]. China Energy, 2016,38(3):25-28.
|
[4] |
朱法华,王圣,孟令媛.燃煤超低排放的减排潜力及其实施的必要性分析[J]. 环境保护, 2016,44(7):42-46. Zhu F H, Wang S, Meng L Y. Analysis on the emission reduction potential of coal-fired ultra-low emission and the necessity of its implementation[J]. Environmental Protection, 2016,44(7):42-46.
|
[5] |
Xue W B, Wang J N, Niu H, et al. Assessment of air quality improvement effect under the national total emission control program during the twelfth national five-year plan in China[J]. Atmospheric Environment, 2013,68(4):74-81.
|
[6] |
钟悦之,蒋春来,宋晓辉,等.火电行业"十三五"主要大气污染物减排潜力情景分析研究[J]. 环境科学与管理, 2016,42(12):58-62, 136. Zhong Y Z, Jiang C L, Song X H, et al.Scenario Analysis of major air pollutant emission reduction potentials in the "13th five-year plan" of thermal power industry[J]. Environmental Science and Management, 2016,42(12):58-62,136.
|
[7] |
孙现伟,邓双,朱云,等.我国燃煤电厂PM2.5减排潜力预测与分析[J]. 环境科学研究, 2016,29(5):637-645. Sun X W, Deng S, Zhu Y, et al. Prediction and analysis of PM2.5 emission reduction potential of coal-fired power plants in China[J]. Environmental Science Research, 2016,29(5):637-645.
|
[8] |
谢晔.火电企业二氧化硫排放量核算方法研究——以浙江省为例[J]. 低碳世界, 2017,(11):14-15. Xie Y. Study on accounting method of sulfur dioxide emission in thermal power enterprises:taking Zhejiang province as an example[J]. Low Carbon World, 2017(11):14-15.
|
[9] |
朱文波,李楠,黄志炯,等.广东省火电污染物排放特征及其对大气环境的影响[J]. 环境科学研究, 2016,29(6):810-818. Zhu W B, Li N, Huang Z J, et al. Characteristics of thermal power pollutants in Guangdong Province and their impact on atmospheric environment[J]. Environmental Science Research, 2016,29(6):810-818.
|
[10] |
Liu F, Zhang Q, Tong D, et al. High-resolution inventory of technologies, activities, and emissions of coal-fired power plants in China from 1990 to 2010[J]. Atmospheric Chemistry and Physics, 2015,23(15):13299-13317.
|
[11] |
Chen L H, Sun Y Y, Wu X C, et al. Unit-based emission inventory and uncertainty assessment of coal-fired power plants[J]. Atmospheric environment, 2014,99(12):527-535.
|
[12] |
丁青青,魏伟,沈群,等.长三角地区火电行业主要大气污染物排放估算[J]. 环境科学, 2015,36(7):2389-2394. Ding Q Q, Wei W, Shen Q, et al. Estimation of major air pollutant emissions from thermal power industry in the Yangtze River Delta[J]. Environmental Sciences, 2015,36(7):2389-2394.
|
[13] |
崔建升,屈加豹,伯鑫,等.基于在线监测的2015年中国火电排放清单[J]. 中国环境科学, 2018,38(6):2062-2074. Cui J S, Qu J B, Bo X, et al. 2015 China thermal power emissions inventory based on online monitoring[J]. Chinese Environmental Science, 2018,38(6):2062-2074.
|
[14] |
Hao J M, Wang L T, Shen M J, et al. Air quality impacts of power plant emissions in Beijing[J]. Environmental Pollution, 2007,2(147):401-408.
|
[15] |
伯鑫,王刚,温柔,等.京津冀地区火电企业的大气污染影响[J]. 中国环境科学, 2015,35(2):364-373. Bo X, Wang G, Wen R, et al. The impact of thermal power enterprises on the air pollution in Beijing-Tianjin-Hebei region[J]. Chinese Environmental Science, 2015,35(2):364-373.
|
[16] |
薛文博,许艳玲,王金南,等.全国火电行业大气污染物排放对空气质量的影响[J]. 中国环境科学, 2016,36(5):1281-1288. Xue W B, Xu Y L, Wang J N, et al. The impact of air pollutant emissions from the national thermal power industry on air quality[J]. Chinese Environmental Science, 2016,36(5):1281-1288.
|
[17] |
莫华,朱法华,王圣.火电行业大气污染物排放对PM2.5的贡献及减排对策[J]. 中国电力, 2013,46(8):1-6. Mo H, Zhu F H, Wang S. Contribution of atmospheric pollutant emissions to PM2.5 in thermal power industry and countermeasures for reducing emissions[J]. China Power, 2013,46(8):1-6.
|
[18] |
HJ2.2-2008环境影响评价技术导则:大气环境[S]. HJ2.2-2008 Guidelines for environmental impact assessment:atmospheric environment[S].
|
[19] |
伯鑫.CALPUFF模型技术方法与应用[M]. 北京:中国环境出版社, 2016:1-2. Bo X. The technology method and application of CALPUFF model[M]. Beijing:China Environment Press, 2016:1-2.
|
[20] |
Scire J S, Strimaitis D G, Yamartino R J. A user's guide for CALPUFF dispersion model[M]. Concord, MA:Earth Tech,Inc., 2000.
|
[21] |
伯鑫,丁峰,徐鹤,等.大气扩散CALPUFF模型技术综述[J]. 环境监测管理与技术, 2009,21(3):9-13. Bo X, Ding F, Xu H, et al. A review of atmospheric diffusion CALPUFF model technology[J]. Environmental Monitoring Management and Technology, 2009,21(3):9-13.
|
[22] |
Sabah A W, Ali S, Ali A D. Application of California Puff (CALPUFF) model:a case study for Oman[J]. Clean Technologies and Environmental Policy, 2011,1(13):177-189.
|
[23] |
朱好,张宏升,蔡旭晖,等.CALPUFF在复杂地形条件下的近场大气扩散模拟研究[J]. 北京大学学报(自然科学版), 2013,49(3):452-462. Zhu H, Zhang H S, Cai X H, et al. Near-field atmospheric diffusion simulation under complex terrain conditions using CALPUFF model[J]. Journal of Peking University (Natural Science Edition), 2013,49(3):452-462.
|
[24] |
Lee H D, Yoo J W, Kang M K, et al. Evaluation of concentrations and source contribution of PM10 and SO2 emitted from industrial complexes in Ulsan, Korea:Interfacing of the WRF-CALPUFF modeling tools[J]. Atmospheric Pollution Research, 2014,5(4):664-676.
|
[25] |
唐晓兰,程水源.海南岛大气污染物扩散特征[J]. 环境工程, 2016, 34(7):93-97. Tang X L, Chen S Y. Diffusion characteristics of atmospheric pollutants in Hainan Island[J]. Environmental Engineering, 2016, 34(7):93-97.
|
[26] |
赵伟,范绍佳,谢文彰. AERMOD和CALPUFF对沿海电厂烟气扩散模拟对比研究[J]. 环境科学与技术, 2015,38(3):189-194. Zhao W, Fan S J, Xie W Z. Comparative study of AERMOD and CALPUFF on simulation of flue gas diffusion in coastal power plants[J]. Environmental Science and Technology, 2016,34(7):93-97.
|
[27] |
Fisher A L, Parsons M C, Roberts S E, et al. Long-term SO2 dispersion modeling over a coastal region[J]. Environmental technology, 2003,24(4):399-409.
|
[28] |
Levy J I, Wilson A M, Evans J S, et al. Estimation of primary and secondary particulate matter intake fractions for power plants in Georgia[J]. Environmental Science and Technology, 2003,37(24):5528-5536.
|
[29] |
Levy J I, Greco S I, Spengler J D. The importance of population susceptibility for air pollution risk assessment:s case study of power plants near Washington, DC[J]. Environmental Health Perspectives, 2002,110(12):1253-1260.
|
[30] |
伯鑫,王刚,田军,等.AERMOD模型地表参数标准化集成系统研究[J]. 中国环境科学, 2015,35(9):2570-2575. Bo X, Wang G, Tian J, et al. Research on standardization and integration system of AERMOD model surface parameters[J]. Chinese Environmental Science, 2015,35(9):2570-2575.
|
[31] |
王芳,李明君,范清.气象场对CALPUFF模式预测某沿海电厂PM2.5浓度的影响[J]. 有色金属工程, 20155,(6):84-88. Wang F, Li M J, Fan Q. Effect of meteorological field on prediction of PM2.5 concentration in a coastal power plant by CALPUFF mode[J]. Non-ferrous Metal Engineering, 20155,(6):84-88.
|
[32] |
胡月琪,邬晓东,王琛,等.北京市典型燃烧源颗粒物排放水平与特征测试[J]. 环境科学, 2016,37(5):1653-1661. Hu Y Q, Wu X D, Wang C, et al. Emission standards and characteristics of typical combustion sources particulates in Beijing[J]. Environmental Sciences, 2016,37(5):1653-1661.
|
[33] |
肖明卫,黄嵘,仵彦卿.燃煤电厂烟气脱硫设施出口二氧化硫排放量核算方法比较[J]. 环境研究与监测, 2010,23(3):14-15. Xiao M W, Huang R, Wu Y Q. Comparison of accounting methods for sulfur dioxide emissions from flue gas desulfurization facilities in coal-fired power plants[J]. Environmental research and monitoring, 2010,23(3):14-15.
|
[34] |
伯鑫,何友江,商国栋,等.基于CEMS全国污染源清单数据库系统开发与应用[J]. 环境工程, 2014,32(8):105-108+113. Bo X, He Y J, Shang G D, et al. Development and application of national pollution source inventory database system based on CEMS[J]. Environmental Engineering, 2014,32(8):105-108+113.
|
[35] |
戴佩虹.基于CEMS数据的火电厂SO2和NOx排放因子建立与不确定性分析[D]. 广州:华南理工大学, 2016. Dai P H. The thermal power plants SO2 and NOx emission factor set and uncertainty analysis that based on the CEMS data[D]. Guangzhou:South China University of Technology, 2016.
|
[36] |
李琳玮,黄亮.浅析气温对海南电网负荷特性的影响[J]. 科技经济导刊, 2017,(30):44-45. Li L W, Huang L. Analysis of the influence of temperature on the load characteristics of Hainan power grid[J]. Science and Technology Economic Guide, 2017(30):44-45.
|
[37] |
王占山,车飞,潘丽波.火电厂大气污染物排放清单的分配方法研究[J]. 环境科技, 2014,27(2):45-48. Wang Z S, Che F, Pan L B. Study on the allocation method of air pollutant emission inventory in thermal power plants[J]. Environmental Technology, 2014,27(2):45-48.
|
[38] |
伯鑫.中国电力行业大气污染物排放时间特征谱研究[C]//2017中国环境科学学会科学与技术年会论文集(第一卷).中国环境科学学会, 2017. Bo X. Study on time characteristic spectrum of air pollutant emission in China's power industry[C]//Proceedings of the 2017 Chinese Society of Environmental Sciences Science and Technology Annual Conference (Volume I). Chinese Society of Environmental Sciences, 2017.
|
|
|
|