|
|
Microbial community structure and dynamics in swine wastewater treatment system |
HUANG Wei1, LIU Lan-ying1, WU Miao-hong1, CHEN Li-hua1, LÜ Xin1, YE Mei-feng2, LIN Dai-yan2, SONG Yong-kang1 |
1. Institute of Agricultural Quality Standards and Testing Technology Research, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China;
2. Institute of Agricultural Engineering and Technology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China |
|
|
Abstract To elucidate the bacterial community dynamics in swine wastewater treatment system, the bacterial community characteristics in different treatment units of swine wastewater was analyzed by Illumina Miseq high-throughput sequencing technologies, and the correlation between bacterial community and water quality or antibiotics was investigated. The results demonstrated that microbial community structure varies greatly in different wastewater treatment processes. The dominant bacteria in fouling pool and anaerobic reator were Firmicutes, Bacteroidetes and Proteobacteria, the dominant bacteria in aeration tan were Firmicutes, Verrucomicrobia, Bacteroidetes, Proteobacteria and Candidatus Saccharibacteria, while in oxidation pond, the dominant bacteria were Firmicutes, Proteobacteria, Chloroflexi, Euryarchaeota and Bacteroidetes. The microbial comminity structure in wasterwater treatment system was significantly correlated with both water quality and antibiotics (P<0.05). Acinetobacter, Bacteroides, Prevotella, Lachnospiracea_incertae_sedis correlated closely with COD、TN、NH4+-N. Clostridium sensu strict, Methanothrix correlated closely with TN、NH4+-N. Petrimonas, Lachnospiracea_incertae_sedis, Clostridium XlVa, Tissierella extremely significant positively correlated with sulfamethoxazole, sulfamethoxazole, doxycycline, oxytetracycline. Acinetobacter, Bacteroides, Prevotella significant positively correlated with enrofloxacin and tetracycline. Prevotella, Lachnospiracea_incertae_sedis positively correlated with ciprofloxacin. Clostridium sensu stricto, Petrimonas positively correlated ofloxacin.
|
Received: 03 July 2018
|
|
|
|
|
[1] |
庄榆佳,高阳俊,邓玉君,等.微生物固化曝气技术对养殖废水的深度处理[J]. 环境化学, 2015,34(7):1356-1362. Zhuang Yu-jia, Gao Yang-jun, Deng Yu-jun, et al.Advanced treatment of swine wastewater by the immobilized-microorganism and aeration technology[J]. Environmental Chemistry, 2015,34(7):1356-1362.
|
[2] |
翟一帆,袁青彬,胡南.养猪废水处理系统微生物群落结构变化及影响因素研究[J]. 水资源保护, 2018,34(1):88-94. Zhai Yi-fan, Yuan Qing-bin, Hu Nan. Study on structure variation and influencing factors of microbial community in swine wastewater treatment system[J]. Water Resources Protection, 2018,34(1):88-94.
|
[3] |
申童童,袁林江,温丹丹,等.侧流污泥返送到缺氧池对A2/O系统效能影响研究[J]. 中国环境科学, 2018,38(9):3335-3342. Shen Tong-tong, Yuan Lin-jiang, Wen Dan-dan, et al. Effect of side-stream sludge returning to anoxic tank on A2/Osystem effectiveness[J]. China Environmental Science, 2018,38(9):3335-3342.
|
[4] |
杜龑,周北海,袁蓉芳,等.UASB-SBR工艺处理规模化畜禽养殖废水[J]. 环境工程学报, 2018,12(2):497-504. Du Yan, Zhou Bei-hai, Yuan Rong-fang, et al. Treatment of large-scale livestock wastewater by UASB-SBR process[J]. Chinese Journalof Environmental Engineering, 2018,12(2):497-504.
|
[5] |
支尧,张光生,钱凯,等.生物吸附/MBR/硫铁自养反硝化组合工艺优化研究[J]. 中国环境科学, 2018,38(6):2097-2104. Zhi Yao, Zhang Guang-sheng, Qian Kai, et al. Research on optimal operation by a combined biological adsorption-MBR-Sulfur/Iron autotrophic denitrification process[J]. China Environmental Science, 2018,38(6):2097-2104.
|
[6] |
陈晴,王毅力,赵丽,等.ABR-MABR耦合工艺处理畜禽养殖废水的同步启动[J]. 环境科学研究, 2017,30(2):298-305. Chen Qing, Wang Yi-li, Zhao Li, et al. Synchronous Start-Up of Anaerobic Baffled Reactor-Membrane Biofilm Bioreactor (ABR-MABR) Coupling Process Treating Synthetic Livestock and Poultry Wastewater[J]. Research of Environmental Sciences, 2017,30(2):298-305.
|
[7] |
赵丽,王毅力.AMBR-MABR耦合工艺处理模拟畜禽养殖废水的启动和运行[J]. 环境工程学报, 2017,11(11):5799-5809. Zhao Li, Wang Yi-li. Start-up and operation of anaerobic migrating blanket reactor-membrane biofilm bioreactor (AMBR-MABR) coupling process treating synthetic livestock wastewater[J]. Chinese Journal of Environmental Engineering, 2017,11(11):5799-5809.
|
[8] |
Cydzikkwiatkowska A, Zielińska M. Bacterial communities in full-scale wastewater treatment systems[J]. World Journal of Microbiology & Biotechnology, 2016,32(4):66.
|
[9] |
王维奇,王秀杰,李军,等.包埋厌氧氨氧化的脱氮特性及其微生物群落结构[J]. 中国环境科学, 2018,38(9):3343-3350. Wang Wei-qi, Wang Xiu-jie, Li Jun, et al. Nitrogen removal characteristics and microbial community structure analysis of entrapped anaerobic ammonium oxidizingbacteria[J]. China Environmental Science, 2018,38(9):3343-3350.
|
[10] |
Fang F, Han H, Zhao Q, et al. Bioaugmentation of biological contact oxidation reactor (BCOR) with phenol-degrading bacteria for coal gasification wastewater (CGW) treatment[J]. Bioresource Technology, 2013,150:314-320.
|
[11] |
Liu X, Chen Y, Zhang X, et al. Aerobic granulation strategy for bioaugmentation of a sequencing batch reactor (SBR) treating high strength pyridine wastewater[J]. Journal of Hazardous Materials, 2015,295:153-160.
|
[12] |
Chen Y, Lan S, Wang L, et al. A review:Driving factors and regulation strategies of microbial community structure and dynamics in wastewater treatment systems[J]. Chemosphere, 2017,174:173-182.
|
[13] |
Renbao L, Cheng M P, Wu M C, et al. Use of metagenomic approaches to isolate lipolytic genes from activated sludge[J]. Bioresource Technology, 2010,101(21):8323-8329.
|
[14] |
Garciaarmisen T, Anzil A, Cornelis P, et al. Identification of antimicrobial resistant bacteria in rivers:insights into the cultivation bias[J]. Water Research, 2013,47(14):4938-4947.
|
[15] |
Li Y, Adams J, Shi Y, et al. Distinct Soil Microbial Communities in habitats of differing soil water balance on the Tibetan Plateau[J]. Scientific Reports, 2017,7:46407.
|
[16] |
Kallenbach C M, Frey S D, Grandy A S. Direct evidence for microbial-derived soil organic matter formation and its ecophysiological controls[J]. Nature Communications, 2016,7:13630.
|
[17] |
Barton W, Penney N C, Cronin O, et al. The microbiome of professional athletes differs from that of more sedentary subjects in composition and particularly at the functional metabolic level[J]. Gut, 2018,67(4):625-633.
|
[18] |
GB 18596-2001畜禽养殖业污染物排放标准[S]. GB 18596-2001 Discharge standard of pollutants forlivestock and poultry breeding[S].
|
[19] |
GB 12999-1991水质采样样品的保存和管理技术规定[S]. GB 12999-1991 Water quality sampling-Technical regulation of the preservation and handling of samples[S].
|
[20] |
Magoä T, Salzberg S L. FLASH:fast length adjustment of short reads to improve genome assemblies[J]. Bioinformatics, 2011,27(21):2957-2963.
|
[21] |
Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads[J]. Embnet Journal, 2011,17(1):10-12.
|
[22] |
Schmieder R, Edwards R. Quality control and preprocessing of metagenomic datasets[J]. Bioinformatics, 2011,27(6):863-864.
|
[23] |
Edgar R C. Search and clustering orders of magnitude faster than BLAST[J]. Bioinformatics, 2010,26(19):2460-2461.
|
[24] |
Ye L, Shao M F, Zhang T, et al. Analysis of the bacterial community in a laboratory-scale nitrification reactor and a wastewater treatment plant by 454-pyrosequencing[J]. Water Research, 2011,45(15):4390-4398.
|
[25] |
Schloss P D, Westcott S L, Ryabin T, et al. Introducing mothur:open-source, platform-independent, community-supported software for describing and comparing microbial communities[J]. Applied & Environmental Microbiology, 2009,75(23):7537-7541.
|
[26] |
Caporaso J G, Kuczynski J, Stombaugh J, et al. QⅡME allows analysis ofhigh-throughput communitysequencingdata[J]. NatMethods, 2010, 7(5):335-336.
|
[27] |
HJ/T 399-2007水质化学需氧量的测定快速消解分光光度法. HJ/T 399-2007 Water quality-Determination of the chemical oxygen demand-Fast digestion-Spectrophotometric method.
|
[28] |
HJ636-2012水质总氮的测定碱性过硫酸钾消解紫外分光光度法. HJ636-2012 Water quality-Determination of total nitrogen-Alkaline potassium persulfate digestion UV spectrophotometric method.
|
[29] |
HJ/T 535-2009水质氨氮的测定纳氏试剂分光光度法. HJ/T 535-2009 Waterquality-Determinationofammonianitrogen-Nessler'sreagentspectrophotometry.
|
[30] |
郭欣妍,王娜,郝利君,等.超高效液相色谱/串联质谱法同时测定水、土壤及粪便中25种抗生素[J]. 分析化学, 2015,(1):13-20. Guo Xin-Yan, Wang Na, Hao Li-Jun, et al. Simultaneous detection of 25kinds of veterinary antibiotics in soil, manure and water samples using liquid chromatography_tandem mass spectrometry[J]. Chinese journal of analytical chemistry, 2015,(1):13-20.
|
[31] |
Oksanen J B F, Kindt R, Legendre P, et al. Vegan:community ecology R package, v2.0-10[Z]. https://CRAN.R-project.org/package=vegan/2013-12-12.
|
[32] |
Warnes G R, Bolker B, Bonebakker L, et al. gplots:Various R programming tools for plotting data.https://CRAN.R-project.org/package=gplots/2016-03-30.
|
[33] |
Segata N, Izard J, Waldron L, et al. Metagenomic biomarker discovery and explanation[J]. Genome Biology, 2011,12(6):R60.
|
[34] |
朱映红.微生物强化猪场沼液脱氮工艺研究[D]. 武汉:华中农业大学, 2015. Zhu Ying-hong. Research on high-perform ancenitrogen removalofpiggerybiogaseffluentbymicrobialbio-augmentation[D]. Wuhan:Huazhong Agricultural University, 2015.
|
[35] |
刘元望,李兆君,冯瑶,等.微生物降解抗生素的研究进展[J]. 农业环境科学学报, 2016,35(2):212-224. Liu Yuan-wang, Li Zhao-jun, Feng Yao, et al. Research progress in microbial degradation of antibiotics[J]. Journal of Agro-Environment Science, 2016,35(2):212-224.
|
[36] |
靳红梅,黄红英,管永祥,等.规模化猪场废水处理过程中四环素类和磺胺类抗生素的降解特征[J]. 生态与农村环境学报, 2016,32(6):978-985. Jin Hong-mei, Huang Hong-ying, Guan Yong-xiang, et al. Characteristics of degradation tetracyclines and sulfonamides during wastewater treating processes in an in-tensive swine farm[J]. Journal of Ecology and Rural Environment, 2016,32(6):978-985.
|
[37] |
Wang N, Guo X, Xu J, et al. Pollution characteristics and environmental risk assessment of typical veterinary antibiotics in livestock farms in Southeastern China[J]. Journal ofenvironmental science and health. Part B, 2014,49(7):468-479.
|
[38] |
Prado N, Ochoa J, Amrane A. Biodegradation and biosorption of tetracycline and tylosin antibiotics in activated sludge system[J]. Process Biochemistry. 2009,44(11):1302-1306.
|
[39] |
Kim S E P, Jensen J N, et al. Removal of antibiotics in wastewater:Effect of hydraulic and solid retention times on the fate of tetracycline in the activated sludge process[J]. Environmental Science & Technology, 2005,39(15):5816-5823.
|
[40] |
杨晓芳,杨涛,王莹,等.四环素类抗生素污染现状及其环境行为研究进展[J]. 环境工程, 2014,32(2):123-127. Yang Xiao-fang, Yang Tao, Wang Ying, et al. Research progress in progress in pollution status and environmental behavior of tetracycline antibiotics[J]. Environmental Engineering, 2014,32(2):123-127.
|
[41] |
刘志伟,周美修,宋俊玲,等.复合垂直流人工湿地污染物去除特征及微生物群落多样性分析[J]. 环境工程, 2014,32(2):38-42. Liu Zhi-wei, Zhou Mei-xiu, Song Jun-ling, et al. Pollutants removal characteristics and analysis of microbial communitu diversity in integrated vertical-flow constructed wetland[J]. Environmental Engineering, 2014,32(2):38-42.
|
[42] |
Lamendella R, Domingo J W, Ghosh S, et al. Comparative fecal metagenomics unveils unique functional capacity of the swine gut[J]. Bmc Microbiology, 2011,11(1):103.
|
[43] |
Wagner M, Loy A. Bacterial community composition and function in sewage treatment systems[J]. Current Opinion in Biotechnology, 2002, 13(3):218-227.
|
[44] |
Hu M, Wang X, Wen X, et al. Microbial community structures in different wastewater treatment plants as revealed by 454-pyrosequencing analysis[J]. Bioresource Technology, 2012,117:72-79.
|
[45] |
Ducey T F, Hunt P G. Microbial community analysis of swine wastewater anaerobic lagoons by next-generation DNA sequencing[J]. Anaerobe, 2013,21(6):50-57.
|
[46] |
Wang X, Hu M, Xia Y, et al. Pyrosequencing analysis of bacterial diversity in 14wastewater treatment systems in China[J]. Bioresource Technology, 2012,78(19):7042-7047.
|
[47] |
Yu K, Zhang T. Metagenomic and metatranscriptomicanalysis of microbial community structure and gene expression of activated sludge[J]. PLoS One, 2012,7(5):e38183.
|
[48] |
Cydzik-Kwiatkowska A, Zielińska M. Bacterial communities in full-scale wastewater treatment systems[J]. World J Microbiology & Biotechnology, 2016,32(4):66.
|
[49] |
Looft T J T, Allen H K, Bayles D O, et al. In-feed antibiotic effects on the swine intestinal microbiome[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012,109(5):1691-1696.
|
|
|
|