|
|
Research progress of cable bacteria in sediment |
ZHANG Hai-han, WANG Yue, HUANG Ting-lin, HE Hui-yan, WANG Yue, ZHANG Meng-yao |
Key Laboratory of Northwest Water Resources and Environment, Ministry of Education, Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China |
|
|
Abstract Recently, a novel multicellular filamentous microbe named as cable bacteria was observed in sediments, which belong to Desulfobulbaceae of proteobacteria. Cable bacteria conducedted complete redox reaction by coupling oxygen reduction on sediment surface with sulfide oxidation in deep anoxic layer through long-distance electron transport. Cable bacteria had three connection modes and surface ridge structure for electronic transport. It existed widely in natural environment rich in sulfate and seasonal periodic variation. This new multicellular cooperation mode had a significant impact on the biogeochemical cycle of sediments, which promoted the dissolution of iron and manganese in sulphide areas of sediments, and inhibited the release of sulfur and phosphorus. Moreover, cable bacteria was involved in the degradation of sulfide and hydrocarbon pollutants, and providing a new research direction in the field of bioremediation of contaminated sediments. Here, the discovery, physiological metabolism, habitat environmental conditions and biogeochemical cycle of cable bacteria were reviewed systematically.
|
Received: 16 December 2018
|
|
|
|
|
[1] |
Donoghue P C J, Antcliffe J B. Early life:Origins of multicellularity[J]. Nature, 2010,466(7302):41-42.
|
[2] |
De M S, Rainey P B. Nascent multicellular life and the emergence of individuality[J]. Journal of Biosciences, 2014,39(2):237-248.
|
[3] |
Bonner J T. The origins of multicellularity[J]. Integrative Biology Issues News and Reviews, 2015,1(1):27-36.
|
[4] |
Grosberg R K, Strathmann R R. The evolution of multicellularity:a minor major transition[J]. Annual review of ecology enolution and systematics, 2007,38(38):621-654.
|
[5] |
Basu S, Gerchman Y, Collins C H, et al. A synthetic multicellular system for programmed pattern formation[J]. Nature, 2005,434(7037):1130-1133.
|
[6] |
潘怡然,崔康平,张硕,等.颗粒活性炭促进高温厌氧消化的研究[J]. 中国环境科学, 2018,38(4):1324-1328. Pan Y R, Cui K P, Zhang S, et al. The study on granular activated carbon to promote thermophilic anaerobic digestion[J]. China Environmental Science, 2018,38(4):1324-1328.
|
[7] |
汪明霞,王娟,司友斌. Shewanella oneidensis MR-1异化还原Fe(Ⅲ)介导的As(Ⅲ)氧化转化[J]. 中国环境科学, 2014,34(9):2368-2373. Wang M X, Wang J, Si Y B. As(Ⅲ) oxidization coupled to Fe(Ⅲ) reduction by Shewanella oneidensis MR-1[J]. China Environmental Science, 2014,34(9):2368-2373.
|
[8] |
Kato S, Hashimoto K, Watanabe K, et al. Microbial interspecies electron transfer via electric currents through conductive minerals[J]. Proceedings of the National Academy of Sciences, 2012,109(25):10042-10046.
|
[9] |
Marsili E, Baron D B, Shikhare I D, et al. Shewanella secretes flavins that mediate extracellular electron transfer[J]. Proceedings of the National Academy of Sciences, 2008,105(10):3968-3973.
|
[10] |
Roden E E, Kappler A, Bauer I, et al. Extracellular electron transfer through microbial reduction of solid-phase humic substances[J]. Nature Geoscience, 2010,3(6):417-421.
|
[11] |
杨超,何小松,席北斗,等.填埋初期水溶性有机物结构受电子转移的影响[J]. 中国环境科学, 2017,37(1):229-237. Yang C, He X S, Xi B D, et al. Effect of electron transfer on the structure of dissolved organic matter during initial landfill stage[J]. China Environmental Science, 2017,37(1):229-237.
|
[12] |
Hartshorne R S, Reardon C L, Ross D, et al. Characterization of an electron conduit between bacteria and the extracellular environment[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009,106(52):22169-22174.
|
[13] |
Liu X, Tremblay P L, Malvankar N S, et al. A Geobacter sulfurreducens strain expressing pseudomonas aeruginosa type IV pili localizes OmcS on pili but is deficient in Fe(Ⅲ) oxide reduction and current production[J]. Applied and Environmental Microbiology, 2014,80(3):1219-1224.
|
[14] |
Reguera G, Mccarthy K D, Mehta T, et al. Extracellular electron transfer via microbial nanowires[J]. Nature, 2005,435(7045):1098-1101.
|
[15] |
Eaktasang N, Kang C S, Lim H, et al. Production of electrically-conductive nanoscale filaments by sulfate-reducing bacteria in the microbial fuel cell[J]. Bioresour Technol, 2016,210:61-67.
|
[16] |
Kumar S S, Basu S, Bishnoi N R. Effect of cathode environment on bioelectricity generation using a novel consortium in anode side of a microbial fuel cell[J]. Biochemical Engineering Journal, 2017,121:17-24.
|
[17] |
Cologgi D L, Lampa-Pastirk S, Speers A M, et al. Extracellular reduction of uranium via Geobacter conductive pili as a protective cellular mechanism[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011,108(37):15248-15252.
|
[18] |
马晨,周顺桂,庄莉,等.微生物胞外呼吸电子传递机制研究进展[J]. 生态学报, 2011,31(7):2008-201. Ma C, Zhou S G, Zhuang L, et al. Electron transfer mechanism of extracellular respiration:a review[J]. Acta Ecologica Sinica, 2011, 31(7):2008-2018.
|
[19] |
Nielsen L P, Risgaard-Petersen N, Fossing H, et al. Electric currents couple spatially separated biogeochemical processes in marine sediment[J]. Nature, 2010,463(7284):1071-1074.
|
[20] |
Borch T, Kretzschmar R, Kappler A, et al. Biogeochemical redox processes and their impact on contaminant dynamics[J]. Environmental Science and Technology, 2009,44(1):15-23.
|
[21] |
Small G E, Cotner J B, Finlay J C, et al. Nitrogen transformations at the sediment-water interface across redox gradients in the Laurentian Great Lakes[J]. Hydrobiologia, 2014,731(1):95-108.
|
[22] |
Weber K A, Urrutia M M, Churchill P F, et al. Anaerobic redox cycling of iron by freshwater sediment microorganisms[J]. Environmental microbiology, 2006,8(1):100-113.
|
[23] |
Duan Y, Gan Y, Wang Y, et al. Arsenic speciation in aquifer sediment under varying groundwater regime and redox conditions at Jianghan Plain of Central China[J]. Science of the Total Environment, 2017, 607-608:992-1000.
|
[24] |
董军,赵勇胜,张伟红,等.垃圾渗滤液中重金属在不同氧化还原带中的衰减[J]. 中国环境科学, 2007,27(6):743-747. Dong J, Zhang Y S, Zhang W H. Attenuation of heavy metals in landfill leachate at different redox zones[J]. China Environmental Science, 2007,27(6):743-747.
|
[25] |
Robinson G, Caldwell G S, Wade M J, et al. Profiling bacterial communities associated with sediment-based aquaculture bioremediation systems under contrasting redox regimes[J]. Scientific Reports, 2016,6(1):38850.
|
[26] |
Thompson A, Chadwick O A, Rancourt D G, et al. Iron-oxide crystallinity increases during soil redox oscillations[J]. Geochimica et Cosmochimica Acta, 2006,70(7):1710-1727.
|
[27] |
Jacinthe P A, Groffman P M. Microbial nitrogen cycling processes in a sulfidic coastal marsh[J]. Wetlands Ecology and Management, 2006, 14(2):123-131.
|
[28] |
倪吾钟,沈仁芳,朱兆良.不同氧化还原电位条件下稻田土壤中15N标记硝态氮的反硝化作用[J]. 中国环境科学, 2000,20(6):519-523. Ni W Z, Shen R F, Zhu Z L. Denitrification of 15N labeled nitrate-N in rice field soil under different redox conditions[J]. China Environmental Science, 2000,20(6):519-523.
|
[29] |
Hojsak I, Abdovic S, Szajewska H, et al. Lactobacillus GG in the prevention of nosocomial gastrointestinal and respiratory tract infections[J]. Pediatrics, 2010,125(5):1171-1177.
|
[30] |
Pfeffer C, Larsen S, Song J, et al. Filamentous bacteria transport electrons over centimetre distances[J]. Nature, 2012,491(7423):218-221.
|
[31] |
Gorski C A, Edwards R, Sander M, et al. Thermodynamic characterization of iron oxide-aqueous Fe2+ redox couples[J]. Environmental Science and Technology, 2016,50(16):8538-8547.
|
[32] |
Flynn T M, O'Loughlin E J, Mishra B, et al. Sulfur-mediated electron shuttling during bacterial iron reduction[J]. Science, 2014,344(6187):1039-1042.
|
[33] |
Bjerg J T, Boschker H T S, Larsen S, et al. Long-distance electron transport in individual, living cable bacteria[J]. Proceedings of the National Academy of Sciences current issue, 2018,115(22):5786-5791.
|
[34] |
Jiang Z X, Zhang S, Klausen L H, et al. In vitro single-cell dissection revealing the interior structure of cable bacteria[J]. Proceedings of the National Academy of Sciences current issue, 2018,115(34):8517-8522.
|
[35] |
Schauer R, Risgaard-Petersen N, Kjeldsen K U, et al. Succession of cable bacteria and electric currents in marine sediment[J]. The ISME Journal, 2014,8(6):1314-1322.
|
[36] |
Risgaard-Petersen N, Damgaard L R, Revil A, et al. Mapping electron sources and sinks in a marine biogeobattery[J]. Journal of Geophysical Research:Biogeosciences, 2015,119(8):1475-1486.
|
[37] |
Vasquez-Cardenas D, van de Vossenberg J, Polerecky L, et al. Microbial carbon metabolism associated with electrogenic sulphur oxidation in coastal sediments[J]. The ISME Journal, 2015,9(9):1966-1978.
|
[38] |
Malkin S Y, Meysman F J. Rapid redox signal transmission by "cable bacteria" beneath a photosynthetic biofilm[J]. Applied and Environmental Microbiology, 2015,81(3):948-956.
|
[39] |
Bjerg J T, Damgaard L R, Holm S A, et al. Motility of electric cable bacteria[J]. Applied and Environmental Microbiology, 2016,82(13):3816-3821.
|
[40] |
Trojan D, Schreiber L, Bjerg J T, et al. A taxonomic framework for cable bacteria and proposal of the candidate genera electrothrix and electronema[J]. Systematic and Applied Microbiology, 2016,39(5):297-306.
|
[41] |
Malkin S Y, Rao A M, Seitaj D, et al. Natural occurrence of microbial sulphur oxidation by long-range electron transport in the seafloor[J]. The ISME Journal, 2014,8(12):1843-1854.
|
[42] |
Larsen S, Nielsen L P, Schramm A. Cable bacteria associated with long distance electron transport in New England salt marsh sediment[J]. Environmental Microbiology Reports, 2015,7(2):175-179.
|
[43] |
Rao A, Risgaard-Petersen N, Neumeier U. Electrogenic sulfur oxidation in a northern saltmarsh (St. Lawrence Estuary, Canada)[J]. Canadian Journal of Microbiology, 2016,162(6):530-537.
|
[44] |
Burdorf L D W, Hidalgo-Martinez S, Cook P, et al. Long-distance electron transport by cable bacteria in mangrove sediments[J]. Marine Ecology Progress, 2016,545:1-8.
|
[45] |
Malkin S Y, Seitaj D, Burdorf L D W, et al. Electrogenic sulfur oxidation by cable bacteria in bivalve reef sediments[J]. Frontiers in Marine Science, 2017,4:28.
|
[46] |
Velde S V D, Ludovic L, Laurine D W B, et al. The impact of electrogenic sulfur oxidation on the biogeochemistry of coastal sediments:A field study[J]. Geochimica et Cosmochimica Acta, 2016, 194:211-232.
|
[47] |
Sulu-Gambari F, Seitaj D, Behrends t, et al. Impact of cable bacteria on sedimentary iron and manganese dynamics in a seasonally-hypoxic marine basin[J]. Geochimica et Cosmochimica Acta, 2016,192:49-69.
|
[48] |
Seitaj D, Sulu-Gambari F, Burdorf L D W, et al. Sedimentary oxygen dynamics in a seasonally hypoxic basin[J]. Limnology and Oceanography, 2016,62(2):452-473.
|
[49] |
Burdorf L D W, Tramper A, Seitaj D, et al. Long-distance electron transport occurs globally in marine sediments[J]. Biogeosciences, 2017,14(3):683-701.
|
[50] |
Risgaard-Petersen N, Kristiansen M, Frederiksen R B, et al. Cable bacteria in freshwater sediments[J]. Applied and Environmental Microbiology, 2015,81(17):6003-6011.
|
[51] |
Marzocchi U, Bonaglia S, van de Velde S, et al. Transient bottom water oxygenation creates a niche for cable bacteria in long-term anoxic sediments of the Eastern Gotland Basin[J]. Environmental Microbiology, 2018,20(8):3031-3041.
|
[52] |
Sulu-Gambari F, Seitaj D, Meysman F J, et al. Cable bacteria control iron-phosphorus dynamics in sediments of a coastal hypoxic basin[J]. Environmental Science and Technology, 2015,50(3):1227-1233.
|
[53] |
Meysman F J R, Risgaard-Petersen N, Malkin S Y, et al. The geochemical fingerprint of microbial long-distance electron transport in the seafloor[J]. Geochimica et Cosmochimica Acta, 2015,152(52):122-142.
|
[54] |
Seitaj D, Schauer R, Sulugambari F, et al. Cable bacteria generate a firewall against euxinia in seasonally hypoxic basins[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015,112(43):13278-13283.
|
[55] |
Rao A M F, Malkin S Y, Hidalgomartinez S, et al. The impact of electrogenic sulfide oxidation on elemental cycling and solute fluxes in coastal sediment[J]. Geochimica et Cosmochimica Acta, 2016,172:265-286.
|
[56] |
Marzocchi U, Trojan D, Larsen S, et al. Electric coupling between distant nitrate reduction and sulfide oxidation in marine sediment[J]. The ISME Journal, 2014,8(8):1682-1690.
|
[57] |
Matturro D, Cruz Viggi C, Aulenta F, et al. Cable bacteria and the bioelectrochemical snorkel:the natural and engineered facets playing a role in hydrocarbons degradation in marine sediments[J]. Frontiers in Microbiology, 2017,8:952.
|
[58] |
Müller H, Bosch J, Griebler C. Long-distance electron transfer by cable bacteria in aquifer sediments[J]. The ISME Journal, 2016, 10(8):2010-2019.
|
[59] |
Kato S, Yamagishi A. A novel large filamentous deltaproteobacterium on hydrothermally inactive sulfide chimneys of the Southern Mariana Trough[J]. Deep Sea Research Part I:Oceanographic Research Papers, 2016,110:99-105.
|
[60] |
Risgaard-Petersen N, Revil A, Meister P, et al. Sulfur, iron-, and calcium cycling associated with natural electric currents running through marine sediment[J]. Geochimica et Cosmochimica Acta, 2012,92:1-13.
|
[61] |
Velde S V D, Callebaut I, Gao Y, et al. Impact of electrogenic sulfur oxidation on trace metal cycling in a coastal sediment[J]. Chemical Geology, 2017,452:9-23.
|
[62] |
Sulu-Gambari F, Roepert A, Jilbert T, et al. Molybdenum dynamics in sediments of a seasonally-hypoxic coastal marine basin[J]. Chemical Geology, 2017,466:627-640.
|
[63] |
Tribovillard N, Algeo T J, Lyons T, et al. Trace metals as paleoredox and paleoproductivity proxies:An update[J]. Chemical Geology, 2006,232(1/2):12-32.
|
[64] |
Zheng Y, Anderson R F, Van Geen A, et al. Authigenic molybdenum formation in marine sediments:a link to pore water sulfide in the Santa Barbara Basin[J]. Geochimica et Cosmochimica Acta, 2000, 64(24):4165-4178.
|
[65] |
孔冠楠,许玫英,杨永刚.基于直接接触的微生物胞外电子传递[J]. 微生物学报, 2017,57(5):643-650. Kong G N, Xu M Y, Yang Y G. Direct contact-dependent microbial extracellular electron transfer[J]. Acta Microbiologica Sinica, 2017, 57(5):643-650.
|
[66] |
许玫英,虞志强,杨永刚,等.微生物厌氧呼吸与有机污染水体沉积物修复[J]. 微生物学杂志, 2017,37(2):2-11. Xu M Y, Yu Z A, Yang Y G. Microbial anaerobic respiration and remediation of aquatic sediments contaminated by refractory organic pollutants[J]. Journal of Microbiology, 2017,37(2):2-11.
|
|
|
|