|
|
Effect of immobilized quaternary ammonium salt on properties of anaerobic granular sludge for treating sulfate organic wastewater |
JIANG Yong-rong, LUO Na, HUANG Xiu-juan, ZHU Zhong-guang, LIANG Ying, ZHANG Xue-hong |
College of Life and Environmental Science, Guilin University of Electronic Technology, Guilin 541004, China |
|
|
Abstract The inhibited anaerobic granules in the process of the anaerobic treatment of sulfate organic wastewater was inoculated into two parallel-operated up-flow anaerobic sludge blankets (UASB) reactors (1# and 2#), then the short-chain and long-chain immobilized quaternary ammonium salt (IQAS) were added into the UASB reactors 1# and 2#, respectively. The effects of the IQAS on the biological activities and physicochemical properties of anaerobic granules were investigated. The results showed that the dehydrogenase and the methanogenic activity of the granules in the two reactors were enhanced with the addition of IQAS, otherwise the settleability was improved. However, the contents of total sulfur, metal elements, extracellular proteins (PN) and extracellular polysaccharides (PS) of the granules were decreased. Furthermore, raman spectroscopy analysis showed that the peak values of PN and PS on the surface of the granules decreased with IQAS addition. Compare with reactor 1#, the coenzyme F420 concentration of anaerobic granules increased obviously in the reactor 2#, but total sulfur and iron contents decreased significantly. This indicated that the IQAS could enhance the bioactivity of the inhibited anaerobic granules due to the stripping surface precipitates from the anaerobic granules, especially the long chain IQAS stripping and activation was more obvious.
|
Received: 02 January 2019
|
|
|
|
|
[1] |
Isa Z, Grusenmeyer S, Verstraete W. Sulfate reduction relative to methane production in high-rate anaerobic digestion:microbiological aspects[J]. Applied & Environmental Microbiology, 1986,51(3):580-587.
|
[2] |
Stefanie J W H, Elferink O, Visser A, et al. Sulfate reduction in methanogenic bioreactors[J]. Fems Microbiology Reviews, 1994, 15(2/3):119-136.
|
[3] |
Hilton B L, Oleszkiewicz J A. Sulphate-induced inhibition of anaerobic digestion[J]. Journal of Environmental Engineering, 1988, 114(6):1377-1391.
|
[4] |
Liu Y, Fang H H P. Precipitates in anaerobic granules treating sulphate-bearing wastewater[J]. Water research, 1998,32(9):2627-2632.
|
[5] |
Ke S, Shi Z, Fang H H P. Applications of two-phase anaerobic degradation in industrial wastewater treatment[J]. Cheminform, 2005,36(42):65-80.
|
[6] |
Wei C H, Wang W X, Deng Z Y, et al. Characteristics of high-sulfate wastewater treatment by two-phase anaerobic digestion process with Jet-loop anaerobic fluidized bed.[J]. Journal of Environmental Sciences, 2007,19(3):264-270.
|
[7] |
Speece R E. Anaerobic Biotechnology for industrial wastewaters[M]. USA:Archae Press, Nashville, Tennessee, 1996:26-65.
|
[8] |
Lin J, Qiu S Y, Kim L, et al. Mechanism of bactericidal and fungicidal activities of textiles covalently modified with alkylated polyethylenimine[J]. Biotechnology and Bioengineering, 2003,83(2):168-172.
|
[9] |
Kim L, Alexander M K. Surpassing nature:rational design of sterile surface materials[J]. TRENDS in Biotechnology, 2005,23:343-348.
|
[10] |
王晓丹,邱树毅,李盛.新型非氧化型的水不溶杀菌剂的合成及应用试验[J]. 工业用水与废水, 2007,38(4):95-97. Wang X D, Qiu S Y, Li S. Synthesis of a new non-oxidized water-insoluble bactericide and application experiment thereof[J]. Industrial, Water & Wastewater, 2007,38(4):95-97.
|
[11] |
Partha M, Elizabeth L, Nehal P, et al. Development of environmentally friendly, antifouling coatings based on tethered quaternary ammonium salts in a crosslinked polydimethylsiloxane matrix[J]. Journal of Coatings Technology and Research, 2008,5(4):405-417.
|
[12] |
Bressya C, Helliob C, Marechalc J P, et al. Bioassays and field immersion tests:a comparison of the antifouling activity of copper-free poly(methacrylic)-based coatings containing tertiary amines and ammonium salt groups[J]. Biofouling, 2010,26(7):769-777.
|
[13] |
Liu F, Zhao C C, Xia L, et al. Biofouling characteristics and identification of preponderant bacteria at different nutrient levels in batch tests of a recirculating cooling water system[J]. Environmental Technology Letters, 2011,32(8):901-910.
|
[14] |
夏璐,刘芳,薛松,等.复合型杀菌剂对生物粘泥处理效果的研究[J]. 环境工程学报, 2011,5(10):2215-2220. Xia L, Liu F, Xue S, et al. Rasearch on compound type biocides in biofouling control[J]. Chinese Journal of Environmental Engineering, 2011,5(10):2215-2220.
|
[15] |
Jiang Y R, Hua L, Qin Y L, et al. Spatial separation and bio-chain cooperation between sulfidogenesis and methanogenesis in an anaerobic baffled reactor fed with sucrose as a carbon source[J]. International Biodeterioration & Biodegradation, 2019.
|
[16] |
余淑贤,李华,蒋永荣,等.粉煤灰为载体的固定化季铵盐制备及杀菌性能[J]. 环境科学与技术, 2018,41(7):26-29. Yu S X, Li H, Jiang Y R, et al. Immobilized Quaternary Ammonium Salt with Fly-ash as Carriers:Preparation and Bactericidal Property[J]. Environmental Science & Technology, 2018,41(7):26-29.
|
[17] |
魏民,郑国臣,李建政,等.表征水体中生物活性及脱氢酶检测方法研究[J]. 东北水利水电, 2012,8:43-46. Wei M, Zheng G C, Li J Z, et al. A research about characterization of biological activities in water and dehydrogenase detection methods[J]. Water Resources & Hydropower of Northeast China, 2012,8:43-46.
|
[18] |
贺延龄.废水的厌氧生物处理[M]. 北京:中国轻工业出版社, 1998, 503-504,509-511,538-543. He Y L. Anaerobic biological treatment of wastewater[M]. Beijing:China Light Industry Press, 1998,503-504,509-511,538-543.
|
[19] |
马放,任南琪,杨基先.污染控制微生物学实验[M]. 哈尔滨:哈尔滨工业大学出版社, 2002:119-122. Ma F, Ren N Q, Yang J X. Microbiological experiment of pollution control[M]. Harbin:Harbin Institute of Technology Press, 2002:119-122.
|
[20] |
赵阳,李秀芬,堵国成,等.钴及其配合物对产甲烷关键酶的影响[J]. 水资源保护, 2008,24(2):82-85. Zhao Y, Li X F, Du G C, et al. Effects of cobalt and its complexes on key methanogenic enzymes[J]. Water Resources Protection, 2008, 24(2):82-85.
|
[21] |
杨丽平,郑小红,罗慧东,等.UASB处理高浓度硫酸盐废水启动过程污泥特性变化[J]. 环境科学, 2009,30(12):3630-3638. Yang L P, Zheng X H, Luo H D, et al. The changes of sludge characteristics in start-up process of UASB treatment of wastewater with high concentration of sulfate[J]. Environment Science, 2009, 30(12):3630-3638.
|
[22] |
王素春.利用Fe(Ⅲ)抑制污泥厌氧消化中硫化氢形成的研究[D]. 西安:西安建筑科技大学, 2013. Wang S C. A research about using Fe (Ⅲ) restrain hydrogen sulfide in the sludge anaerobic digestion to form research[D]. Xi'an:Xi'an University of Architecture and Technology, 2013.
|
[23] |
Liu H, Fang H H P. Extraction of extracellular polymeric substances (EPS) of sludges[J]. Journal of Biotechnology, 2002,95(3):249-256.
|
[24] |
Gaudy, A F. Colorimetric determination of protein and carbohyd-rate[J]. Ind Water Wastes, 1962,7:17-22.
|
[25] |
Bo F, Palmgren R, Keiding K, et al.. Extraction of extracellular polymers from activated sludge using a cation exchange resin[J]. Water Research, 1996,30(8):1749-1758.
|
[26] |
虞雪晴,王志伟,梅晓洁,等.在线化学清洗对厌氧MBR产甲烷性能影响研究[J]. 中国环境科学, 2017,37(9):3339-3345. Yu X Q, Wang Z W, Mei X J, et al. Effects of in-situ chemical cleaning on methanogenic activities in anaerobic membrane bioreactors[J]. China Environmental Science, 2017,37(9):3339-3345.
|
[27] |
曾一鸣.膜生物反应器技术[M]. 北京:国防工业出版社, 2007:106-110. Zeng Y M. Membrane bioreactor technology[M]. Beijing:National Defend Industry Press, 2007:106-110.
|
[28] |
吴唯民,蒋青.辅酶F420及其在厌氧处理中的作用[J]. 中国沼气, 1984,(2):3-11. Wu W M, Jiang Q. Coenzyme F420 and its role in anaerobic treatment[J]. China Biogas, 1984,(2):3-11.
|
[29] |
Dolfing J, Mulder J W. Comparison of methane production rate and coenzyme F420 content of methanogenic consortia in anaerobic granular sludge[J]. Applied and Environmental Microbiology, 1985, 49:1142-1145.
|
[30] |
李卫华,盛国平,陆锐,等.厌氧产甲烷受抑制过程的三维荧光光谱解析[J]. 光谱学与光谱分析, 2011,31(8):2131-2135. Li W H, Sheng G P, Lu R, et al. Three-dimensional fluorescence spectra of the anaerobic methane production process[J]. Spectroscopy and Spectral Analysis, 2011,31(8):2131-2135.
|
[31] |
曹玉成,张妙仙,单胜道.两次投加竹炭对UASB反应器污泥颗粒化的促进作用[J]. 农业工程学报, 2010,26(5):246-250. Cao Y C, Zhang M X, Shan S D. The effect of adding bamboo charcoal twice on the granulation of UASB reactor sludge[J]. Transactions of the Chinese Society of Agricultural Engineering, 2010, 26(5):246-250.
|
[32] |
Lu X, Zhen G, Ni J, et al. Sulfidogenesis process to strengthen re-granulation for biodegradation of methanolic wastewater and microorganisms evolution in an UASB reactor[J]. Water Research, 2017,108:137-150.
|
[33] |
Sheng G P, Yu H Q,Li X Y.Extracellular polymeric substances(EPS) of microbial aggregates in biological wastewater treatment systems:A review[J]. Biotechnology Advances, 2010,28(6):882-894.
|
[34] |
McSwain B S, Irvine R L, Hausner M, et al. Composition and distribution of extracellular polymeric substances in aerobic flocs and granular sludge[J]. Applied and Environmental Microbiology, 2005, 71(2):1051-1057.
|
[35] |
宿程远,郑鹏,卢宇翔,等.海泡石与生物质炭强化厌氧处理养猪废水[J]. 中国环境科学, 2017,37(10):3764-3772. Su C Y, Zheng P, Lu Y X, et al. Enhanced efficiency of an anaerobic reactor containing sepiolite or biochar for treatment swine wastewater[J]. China Environmental Science, 2017,37(10):3764-3772.
|
[36] |
田志娟.胞外多聚物对好氧颗粒污泥形成与结构稳定化的影响研究[D]. 杭州:浙江大学, 2010. Tian Z J. Effects of extracellular polymers on the formation and structural stabilization of aerobic granular sludge[D]. Hangzhou:Zhejiang University, 2010.
|
[37] |
Zinin P V, Misra A, Kamemoto L, et al. Visible, near-infrared, and ultraviolet laser-excited Raman spectroscopy of the monocytes/macrophages (U937) cells[J]. Journal of Raman Spectroscopy, 2010, 41(3):268-274.
|
[38] |
Ivleva N P, Wagner M, Horn H, et al. Towards a nondestructive chemical characterization of biofilm matrix by Raman microscopy[J]. Analytical & Bioanalytical Chemistry, 2009,393(1):197-206.
|
[39] |
Ivleva N P, Wagner M, Horn H, et al. Raman microscopy and surface-enhanced Raman scattering (SERS) for in situ analysis of biofilms[J]. Journal of Biophotonics, 2010,3(8/9):548-556.
|
[40] |
Sandt C, Smith-Palmer T, Pink J, et al. Confocal Raman microspectroscopy as a tool for studying the chemical heterogeneities of biofilms in situ[J]. Journal of Applied Microbiology, 2007,103(5):1808-1820.
|
[41] |
Bourdoiseau J A, Jeannin M, Sabot R, et al. Characterisation of mackinawite by Raman spectroscopy:Effects of crystallisation, drying and oxidation[J]. Corrosion Science, 2008,50(11):3247-3255.
|
[42] |
Lin Y G, Hsu Y K, Chuang C J, et al. Thermally activated Cu/Cu2S/ZnO nanoarchitectures with surface-plasmon-enhanced Raman scattering[J]. Journal of Colloid & Interface Science, 2016,464:66-72.
|
[43] |
Kalampounias A G, Kastrissios D T, Yannopoulos S N. Structure and vibrational modes of sulfur around the λ-transition and the glass-transition[J]. Journal of Non-Crystalline Solids, 2003,326& 327:115-119.
|
[44] |
吴远根,邱树毅,王啸.非缓释高分子季铵盐型抗菌材料的制备[J]. 武汉理工大学学报, 2008,30(12):80-84. Wu Y G, Qiu S Y, Wang X. Preparation of nonsustained-release quaternary ammonium polymer antimicrobial materials[J]. Journal of Wuhan University of Technology, 2008,30(12):80-84.
|
[45] |
Janssen A J H, Letting G, Keizer A. Removal of hydrogen sulphide from wastewater and waste gases by biological conversion to elemental sulphur:Colloidal and interfacial aspects of biologically produced sulphur particles[J]. Colloids & Surfaces A Physicochemical & Engineering Aspects, 1999,151(1/2):389-397.
|
[46] |
蒋永荣,邓秀梅,容翠娟,等.ABR处理模拟糖蜜酒精废水的启动试验[J]. 中国给水排水, 2010,26(3):96-99. Jiang Y R, Deng X M, Rong C J, et al. Pilot study on ABR treatment of simulated molasses alcohol wastewater[J]. China Water & Wastewater, 2010,26(3):96-99.
|
|
|
|