|
|
Reaction behavior of copper slag with waste acid and its arsenic removal mechanism |
LI Yong-kui1,2, ZHU Xing1,2, QI Xian-jin1,2, WANG Hua1,2, ZHANG Xin3, HUI Xing-huan3, HAO Feng-yan1,2, CAI Gui-yuan1,2 |
1. State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, China;
2. Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China;
3. Chuxiong Dianzhong Non-ferrous Metal Co. Ltd, Chuxiong 675000, China |
|
|
Abstract On the basis of composition and phase characteristics of copper slag, the reaction behavior of copper slag with arsenic-containing waste acid and the rule of arsenic removal were investigated, and the reaction kinetics of arsenic removal was also elucidated. Under optimal conditions, including a copper slag dosage of 0.2g/mL, a reaction temperature at 23℃, and a reaction time of 24hours, a maximum adsorption capacity of copper slag of 25.89mg/g was achieved, following by an arsenic removal efficiency of 99.56%. The leaching toxicity of arsenic-fixed copper slag was lower than 5mg/L that is the standard threshold value of hazardous waste. The arsenic-fixed copper slag could be classified as a general solid waste. The kinetic studies revealed that the arsenic adsorption on the copper slag was described by a pseudo-second-order kinetic equation. The process of arsenic removal was limited by the release rate of iron ion. Arsenic was removed via the ion exchange adsorption and the chemical precipitation, which were also beneficial to the arsenic stabilization. A large number of iron ions were released during the solid-liquid reaction between copper slag and waste acid, which could precipitate arsenic via the ion exchange adsorption and the chemical precipitation, forming relative stable arsenates and their derivatives for the arsenic removal. The copper slag exhibits a superior performance for the arsenic removal from waste acid and provides a high-efficient and low-cost method for the disposal of waste acid from heavy non-ferrous smelting industry.
|
Received: 29 March 2019
|
|
|
|
|
[1] |
Xun L, Xing Z, Qi X, et al. Pyrolysis of arsenic-bearing gypsum sludge being substituted for calcium flux in smelting process[J]. Journal of Analytical & Applied Pyrolysis, 2018,130:S0165237017308707.
|
[2] |
Nazari A M, Radzinski R, Ghahreman A. Review of arsenic metallurgy:Treatment of arsenical minerals and the immobilization of arsenic[J]. Hydrometallurgy, 2016,174:S0304386X16307095.
|
[3] |
赵占冲,史谊峰,祝星,等.含砷石膏渣还原分解行为及砷迁移规律[J]. 中国有色金属学报, 2017,27(1):187-197. Zhao Z C, Shi Y F, Zhu X, et al. Reductive decomposition behavior of arsenic bearing gypsum sludge with coal and arsenic migration rule[J]. The Chinese Journal of Nonferrous Metals, 2017,27(1):187-197.
|
[4] |
门玉,李洪枚,张广积.多级沉淀法处理含砷废水[J]. 过程工程学报, 2017,(2):259-262. Men Y, Li H M, Zhang G J. Removal of arsenic from wastewater by multi-stage precipitation[J]. The Chinese Journal of Process Engineering, 2017,(2):259-262.
|
[5] |
Saiz J, Bringas E, Ortiz I. Functionalized magnetic nanoparticles as new adsorption materials for arsenic removal from polluted waters[J]. Journal of Chemical Technology & Biotechnology, 2014,89(6):909-918.
|
[6] |
许效天,霍林,左叶颖,等.铝改性粉煤灰漂珠吸附水溶液中砷的性能研究[J]. 中国环境科学, 2011,31(8):1300-1305. Xu X T, Huo L, Zuo Y Y, et al. Performance research on arsenic adsorption from aqueous solution by aluminum-modified fly ash cenospheres[J]. China Environmental Science, 2011,31(8):1300-1305.
|
[7] |
张广积,刘小娟,李媛媛,等.含砷废物的无害化处理[J]. 工程研究-跨学科视野中的工程, 2015,(4):392-397. Zhang G J, Liu X J, Li Y Y, et al. The treatment of arsenic bearing waste[J]. Journal of Engineering Studies, 2015,(4):392-397.
|
[8] |
Aranda P R, Llorens I, Perino E, et al. Removal of arsenic(V) ions from aqueous media by adsorption on multiwall carbon nanotubes thin film using XRF technique[J]. Environmental Nanotechnology Monitoring & Management, 2016,5(21-26).
|
[9] |
Huisman J L, Schouten G, Schultz C. Biologically produced sulphide for purification of process streams, effluent treatment and recovery of metals in the metal and mining industry[J]. Hydrometallurgy, 2006, 83(1-4):106-113.
|
[10] |
曾辉平,尹灿,李冬,等.基于铁锰泥的除砷吸附剂性能比较及吸附机理[J]. 中国环境科学, 2018,38(9):175-181. Zeng H P, Yin C, Li D, et al. Performance comparison and adsorption mechanism of arsenic removal adsorbents made of backwashing sludge from biofilter for iron and manganese removal[J]. China Environmental Science, 2018,38(9):175-181.
|
[11] |
曾辉平,赵运新,吕育锋,等.水厂反冲洗铁锰泥热处理产物结构及除砷变化[J]. 中国环境科学, 2017,37(8):2986-2993. Zeng H P, Zhao Y X, Lu Y F, et al. Adsorption behaviors towards As and structural change of iron and manganese oxide sludge by thermal treatment[J]. China Environmental Science, 2017,37(8):2986-2993.
|
[12] |
王翠翠,陈秋玲,刘树根,等.超声铁盐改性黄磷水淬渣的制备及除砷性能研究[J]. 中国环境科学, 2017,37(6):2187-2193. Wang C C, Chen Q L, Liu S G, et al. Research on the preparation of ultrasonic-assisted ferric salts modified phosphorous slag and its As(Ⅲ) removing capacity[J]. China Environmental Science, 2017, 37(6):2187-2193.
|
[13] |
陈维芳,程明涛,张道方,等.有机酸-铁改性活性炭去除饮用水中的砷[J]. 中国环境科学, 2011,31(6):910-915. Chen W F, Cheng M T, Zhang D F, et al. Granular activated carbon tailored by organic acid-Fe for arsenic removal[J]. China Environmental Science, 2011,31(6):910-915.
|
[14] |
赵雅光,万俊锋,王杰,等.零价铁(ZVI)去除水中的As(Ⅲ)[J]. 化工学报, 2015,(2):730-737. Zhao Y G, Wang J F, Wang J, et al. Removal of arsenite from aqueous environment by zero-valent iron (ZVI)[J]. CIESC Journal, 2015,(2):730-737.
|
[15] |
吴萍萍,曾希柏.人工合成铁、铝矿对As(V)吸附的研究[J]. 中国环境科学, 2011,31(4):603-610. Wu P P, Zeng X B. Study on arsenate adsorption by synthetic iron and aluminum oxides/hydroxides[J]. China Environmental Science, 2011, 31(4):603-610.
|
[16] |
Wang J, Zeng X C, Zhu X, et al. Sulfate enhances the dissimilatory arsenate-respiring prokaryotes-mediated mobilization, reduction and release of insoluble arsenic and iron from the arsenic-rich sediments into groundwater[J]. Journal of Hazardous Materials, 2017,339:409-417.
|
[17] |
王震,李群,王静宜,等.纳米铁系物对三价砷的吸附机理与性能[J]. 净水技术, 2017,(2):31-39. Wang Z, Li Q, Wang J Y, et al. Mechanism and performance of adsorption for As (Ⅲ) by applied with nanoscale iron materials[J]. Water Purification Technology, 2017,(2):31-39.
|
[18] |
冷迎祥,刘菲,王文娟,等.小分子有机酸对纳米铁稳定砷的影响[J]. 环境工程学报, 2017,11(5):3195-3203. Leng Y X, Liu F, Wang W J, et al. Effects of small molecule organic acids on nanometer iron for stabilization of arsenic[J]. Chinese Journal of Environmental Engineering, 2017,11(5):3195-3203.
|
[19] |
曾辉平,吕赛赛,杨航,等.铁锰泥除砷颗粒吸附剂对As(Ⅴ)的吸附去除[J]. 环境科学, 2018,(1):170-178. Zeng H P, Lu S S, Yang H, et al. Arsenic (V) removal by granular adsorbents made from backwashing residuals from biofilters for iron and manganese removal[J]. Environmental Science, 2018,(1):170-178.
|
[20] |
Baig S A.铁/铁氧化物改性复合吸附材料的制备及其除砷性能和机理研究[D]. 杭州:浙江大学, 2015. Baig S A. Adsorption performance and mechanism of arsenic from water using iron/iron-oxide amended composite adsorbents[D]. Hangzhou:Zhejiang University, 2015.
|
[21] |
张林楠,张力,王明玉,等.铜渣的处理与资源化[J]. 矿产综合利用, 2005,(5):22-27. Zhang L N, Zhang L, Wang M Y, et al. Treatment and resourceful disposal of copper slag[J]. Multipurpose Utilization of Mineral Resources, 2005,(5):22-27.
|
[22] |
Jeon C S, Baek K, Park J K, et al. Adsorption characteristics of As(V) on iron-coated zeolite[J]. Journal of Hazardous Materials, 2009, 163(2/3):804-808.
|
[23] |
冯彦房,薛利红,杨梖,等.载镧生物炭的优化制备及其对水体中砷的吸附[J]. 中国环境科学, 2015,35(8):2433-2441. Feng Y F, Xue L H, Yang B, et al. Optimized preparation of lanthanum uploaded biochar and its application in adsorbing pentavalent arsenic ions from aqueous solution[J]. China Environmental Science, 2015, 35(8):2433-2441.
|
[24] |
Dixit S, Hering J G. Comparison of Arsenic(V) and Arsenic(III) sorption onto iron oxide minerals:Implications for arsenic mobility[J]. Environmental Science & Technology, 2003,37(18):4182.
|
[25] |
国家环境保护总局.《固体废物浸出毒性浸出方法硫酸硝酸法》(HJ/T 299-2007)[R]. 北京:国家环境保护总局, 2007. China Environmental Protection Agency. Solid waste-extraction procedure for leaching toxicity-sulfuric acid & nitric acid method[R]. Beijing:China Environmental Protection Agency, 2007.
|
[26] |
国家环境保护总局.《固体废物腐蚀性测定》(GB/T 15555.12-1995)[R]. 北京:国家环境保护总局, 2007. China Environmental Protection Agency. Identification standards for solid waste-identification for corrosivity[R]. Beijing:China Environmental Protection Agency, 2007.
|
[27] |
Mercadoborrayo B M, Schouwenaars R, Gonzálezchávez J L, et al. Multi-analytical assessment of iron and steel slag characteristics to estimate the removal of metalloids from contaminated water[J]. Environmental Letters, 2013,48(8):887-895.
|
[28] |
Oh C, Rhee S, Oh M, et al. Removal characteristics of As(III) and As(V) from acidic aqueous solution by steel making slag[J]. Journal of Hazardous Materials, 2012,213-214:147-155.
|
[29] |
Guan X H, Su T Z, Wang J M. Quantifying effects of pH and surface loading on arsenic adsorption on NanoActive alumina using a speciation-based model[J]. Journal of Hazardous Materials, 2009, 166(1):39-45.
|
[30] |
Jing C, Liu S, Meng X. Arsenic leachability and speciation in cement immobilized water treatment sludge[J]. Chemosphere, 2005,59(9):1241-1247.
|
[31] |
Liu Q, Gao J, Gu F, et al. One-pot synthesis of ordered mesoporous Ni-V-Al catalysts for CO methanation[J]. Journal of Catalysis, 2015,326(JUN):127-138.
|
[32] |
国家环境保护总局.《危险废弃物鉴别标准浸出毒性鉴别》(GB/T 5085. 3-2007)[R]. 北京:国家环境保护总局, 2007. China Environmental Protection Agency. Identification standards for hazardous weastes-identification for extraction toxicity[R]. Beijing:China Environmental Protection Agency, 2007.
|
[33] |
Guo Z, Pan J, Zhu D, et al. Mechanism of composite additive in promoting reduction of copper slag to produce direct reduction iron for weathering resistant steel[J]. Powder Technology, 2018,329:55-64.
|
[34] |
Lee C G, Alvarez P J J, Nam A, et al. Arsenic(V) removal using an amine-doped acrylic ion exchange fiber:Kinetic, equilibrium, and regeneration studies[J]. Journal of Hazardous Materials, 2017,325:223-229.
|
[35] |
Mohan D, Charles U. Pittman Jr. Arsenic removal from water/wastewater using adsorbents-A critical review[J]. Journal of Hazardous Materials, 2007,142(1):1-53.
|
[36] |
Kim E J, Hwang B R, Baek K. Effects of natural organic matter on the coprecipitation of arsenic with iron[J]. Environmental Geochemistry and Health, 2015,37(6):1029-1039.
|
[37] |
Marinkov N, Markova-Velichkova M, Gyurov S, et al. Preparation and characterization of silicagel from silicate solution obtained by autoclave treatment of copper slag[J]. Journal of Sol-Gel Science and Technology, 2018,87(2):331-339.
|
[38] |
Yang J Q, Cai L Y, Li Q Z, et al. Redox behavior and chemical species of arsenic in acidic aqueous system[J]. Transactions of Nonferrous Metals Society of China, 2017,27(9):2063-2072.
|
[39] |
Thirunavukkarasu O S, T. Viraraghavan, K. S. Subramanian. Arsenic removal from drinking water using iron oxide-coated sand[J]. Water Air & Soil Pollution, 2003,142(1-4):95-111.
|
[40] |
Chai L, Yang J, Zhang N, et al. Structure and spectroscopic study of aqueous Fe(III)-As(V) complexes using UV-Vis, XAS and DFT-TDDFT[J]. Chemosphere, 2017:S0045653517307130.
|
[41] |
Khoe G H, Robins R G. ChemInform abstract:The complexation of iron(III) with sulfate, phosphate, or arsenate Ion in sodium nitrate medium at 25ºC[J]. Cheminform, 1988,19(45):2015-2021.
|
[42] |
王丹赫,张宏华,林建伟,等.四氧化三铁改性沸石改良底泥对水中磷酸盐的吸附作用[J]. 环境科学, 2018,39(11):5024-5035. Wang D H, Zhang H H, Lin J W, et al. Adsorption of phosphate from aqueous solutions on sediments amended with magnetite-modified zeolite[J]. Environmental Science, 2018,39(11):5024-5035.
|
[43] |
玛依拉·麦麦提热依木,迪丽努尔·塔力甫,阿布力克木·阿布力孜. 煤质炭制备条件的优化及对酚类吸附性能与吸附动力学[J]. 环境工程学报, 2016,(3):1281-1288. Mayila Maimaitireyimu, Dilinuer Talipu, Abulikemu Abulizi. Optimization preparation conditions of coal activated carbon and adsorption[J]. Chinese Journal of Environmental Engineering, 2016, (3):1281-1288.
|
[44] |
舒琳,等.低品位锰矿吸附砷(Ⅲ)的化学机理研究[J]. 广西大学学报(自然科学版), 2016,41(5):1689-1695. Shu L, et al. Chemical adsorption mechanism of low-grade manganese ore on arsenic[J]. Journal of Guangxi University(Natural Science Edition), 2016,41(5):1689-1695.
|
[45] |
张昱,豆小敏,杨敏,等.砷在金属氧化物/水界面上的吸附机制Ⅰ.金属表面羟基的表征和作用[J]. 环境科学学报, 2006,26(10):1586-1591. Zhang Y, Dou X M, Yang M, et al. Adsorption mechanism of arsenic on metal oxide adsorbent I. Characterization and the role of metal surface hydroxyl groups[J]. Acta Scientiae Circumstantiae, 2006, 26(10):1586-1591.
|
[46] |
刘慧利,胡建杭,王华,等.铜渣煅烧过程中的多相转变[J]. 中南大学学报(自然科学版), 2013,(8):3159-3165. Liu H L, Hu J H, Wang H, et al. Multiphase transformation during process of copper slag calcination[J]. Journal of Central South University of Science and Technology, 2013,(8):3159-3165.
|
[47] |
Zhang F S, Hideaki Itoh. Iron oxide-loaded slag for arsenic removal from aqueous system[J]. Chemosphere, 2005,60(3):319-325.
|
[48] |
Jia Y, Li Xu, Xin Wang, et al. Infrared spectroscopic and X-ray diffraction characterization of the nature of adsorbed arsenate on ferrihydrite[J]. Geochimica Et Cosmochimica Acta, 2007,71(7):1643-1654.
|
[49] |
Goldberg S, Johnston C T. Mechanisms of arsenic adsorption on amorphous oxides evaluated using macroscopic measurements, vibrational spectroscopy, and surface complexation modeling[J]. J Colloid Interface Sci, 2001,234(1):204-216.
|
[50] |
Singhania S, Wang Q, Filippou D, et al. Temperature and seeding effects on the precipitation of scorodite from sulfate solutions under atmospheric-pressure conditions[J]. Metallurgical & Materials Transactions B, 2005,36(3):327-333.
|
[51] |
朱慧杰,贾永锋,吴星,等.负载型纳米铁吸附剂去除饮用水中As(Ⅲ)的研究[J]. 环境科学, 2009,30(12):3562-3567. Zhu H J, Jia Y F, Wu X, et al. Removal of arsenite from drinking water by activated carbon supported nano zero-valent iron[J]. Environmental Science, 2009,30(12):3562-3567.
|
|
|
|