|
|
In-situ measurement of absorption of SO2 by Na2CO3 spray droplets |
LI Qing-yi1,2, WU Ying-chun1, FAN Hai-dong2, CAO Jian-zheng1, XU Dong-yan1, LV Qi-meng1, WU Xue-cheng1 |
1. State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China;
2. Zhejiang Energy Group Co LTD, Hangzhou 310027, China |
|
|
Abstract In-situ and on-line measurement of flue gas desulfurization reaction is critical for understanding mass transfer process during SO2 absorption in a spray tower and improving desulfurization efficiency. The absorption process of SO2 by Na2CO3 spray droplets was characterized. A Global Rainbow Technique (GRT) system was set up to measure the refractive indices of spray droplets. SO2 was absorbed by Na2CO3 spray droplets, generating Na2SO3. Refractive indices of spray droplets gradually increased with the desulfurization reaction process. The linear relationship between the refractive indices of spray droplets and Na2CO3 consumption made it possible to evaluate the desulfurization reaction process quantitatively. The Na2CO3 consumption was about 62.1% and the absorption reaction rate was thus 8.8×10-6kmol/(m2·s).
|
Received: 18 July 2019
|
|
|
|
|
[1] |
姜秀平,刘有智.湿法烟气脱硫技术研究进展[J]. 应用化工, 2013, 42(3):535-538. Jiang X P, Liu Y Z. Advances in research of wet flue gas desulphurization technology[J]. Applied Chemical Industry, 2013, 42(3):535-538.
|
[2] |
祝杰,吴振元,叶世超,等.喷淋塔液滴粒径分布及比表面积的实验研究[J]. 化工学报, 2014,65(12):4709-4715. Zhu J, Wu Z Y, Ye S C, et al. Drop size distribution and specific surface area in spray tower[J]. Journal of Chemical Industry and Engineering, 2014,65(12):4709-4715.
|
[3] |
李兆东,王世和,王小明,等.湿法脱硫旋流喷嘴雾化粒径空间分布规律[J]. 化工学报, 2007,(4):1007-1012. Li Z D, Wang S H, Wang X M, et al. Atomized particle size spatial distribution of flue gas wet desulfurization swirl nozzle[J]. Journal of Chemical Industry and Engineering, 2007,(4):1007-1012.
|
[4] |
李荫堂,于涛,李军.烟气脱硫喷淋塔内液滴停留时间[J]. 环境工程学报, 2004,(10):89-91. Li Y T, Yu T, Li J. Residence time of droplets in a spray scrubber for FGD[J]. Chinese Journal of Environmental Engineering, 2004,(10):89-91.
|
[5] |
Dou B L, Pan W G, Jin Q, et al. Prediction of SO2 removal efficiency for wet flue gas desulfurization[J]. Energy Conversion and Management, 2009,50(10):2547-2553.
|
[6] |
张军,张涌新,郑成航,等.复合脱硫添加剂在湿法烟气脱硫系统中的工程应用[J]. 中国环境科学, 2014,34(9):2186-2191. Zhang J, Zhang Y X, Zheng C H, et al. Application and experimental investigation of compound additive enhanced wet flue gas desulfurization process[J]. China Environmental Science, 2014,34(9):2186-2191.
|
[7] |
Chen Z, Wang H, Zhuo J, et al. Experimental and numerical study on effects of deflectors on flow field distribution and desulfurization efficiency in spray towers[J]. Fuel Processing Technology, 2017,162:1-12.
|
[8] |
Codolo M C, Bizzo W A. Mass transfer and liquid-film formation in a spray tower for SO2 removal in sodium hydroxide solution[J]. Chemical Engineering & Technology, 2016,39(10):1939-1945.
|
[9] |
Frandsen J, Kiil S, Johnsson J. Optimisation of a wet FGD pilot plant using fine limestone and organic acids[J]. Chemical Engineering Science, 2001,56(10):3275-3287.
|
[10] |
Nygaard H, Kiil S, Johnsson J, et al. Full-scale measurements of SO2 gas phase concentrations and slurry compositions in a wet flue gas desulphurisation spray absorber[J]. Fuel, 2004,83(9):1151-1164.
|
[11] |
Roth N, Anders K, Frohn A. Refractive-index measurements for the correction of particle sizing methods[J]. Applied Optics, 1991, 30(33):4960-4965.
|
[12] |
Van J, Giannoulis D, Zimmer L, et al. Global rainbow thermometry for droplet-temperature measurement[J]. Optics Letters, 1999,24(23):1696-1698.
|
[13] |
Wu X C, Jiang H Y, Wu Y C, et al. One-dimensional rainbow thermometry system by using slit apertures[J]. Optics Letters, 2014, 39(3):638-641.
|
[14] |
Wu Y C, Promvongsa J, Saengkaew S, et al. Phase rainbow refractometry for accurate droplet variation characterization[J]. Optics Letters, 2016,41(20):4672-4675.
|
[15] |
Bakic S, Heinisch C, Damaschke N, et al. Time integrated detection of femtosecond laser pulses scattered by small droplets[J]. Applied Optics, 2008,47(4):523-530.
|
[16] |
Wu Y, Crua C, Li H, et al. Simultaneous measurement of monocomponent droplet temperature/refractive index, size and evaporation rate with phase rainbow refractometry[J]. Journal of Quantitative Spectroscopy & Radiative Transfer, 2018,214:146-157.
|
[17] |
Wu Y, Li H, Wu X, et al. Change of evaporation rate of single monocomponent droplet with temperature using time-resolved phase rainbow refractometry[J]. Proceedings of the Combustion Institute, 2019,37(3):3211-3218.
|
[18] |
Rosebrock C D, Shirinzadeh S, Soeken M, et al. Time-resolved detection of diffusion limited temperature gradients inside single isolated burning droplets using Rainbow Refractometry[J]. Combustion and Flame, 2016,168:255-269.
|
[19] |
Letty C, Renou B, Reveillon J, et al. Experimental study of droplet temperature in a two-phase heptane/air V-flame[J]. Combustion and Flame, 2013,160(9):1803-1811.
|
[20] |
Ouboukhlik M, Godard G, Saengkaew S, et al. Mass transfer evolution in a reactive spray during carbon dioxide capture[J]. Chemical Engineering & Technology, 2015,38(7):1154-1164.
|
[21] |
Ouboukhlik M, Saengkaew S, Fournier-Salauen M-C, et al. Local measurement of mass transfer in a reactive spray for CO2 capture[J]. Canadian Journal of Chemical Engineering, 2015,93(2):419-426.
|
[22] |
吴忠标,刘越,谭天恩.双碱法烟气脱硫工艺的研究[J]. 环境科学学报, 2001,22(5):534-537. Wu Z B, Liu Y, Tan T E. Study of dual-alkali FGD process[J]. Acta Scientiae Circumstantiae, 2001,22(5):534-537.
|
[23] |
Miyake Y. Chemical studies of the western pacific ocean. iv. the refractive index of sea water[J]. Bulletin of the Chemical Society of Japan, 1939,14(6):239-242.
|
[24] |
曹建政,李灿,吴迎春,等.紧凑型彩虹折射仪的开发与实验测试[J]. 激光与光电子学进展, 2019,56(10):173-178. Cao J Z, Li C, Wu Y C, et al. Development and experimental test of compact rainbow refractometer[J]. Laser & Optoelectronics Progress, 2019,56(10):173-178.
|
[25] |
Nussenzveig M. High-frequency scattering by a transparent sphere. ii. theory of the rainbow and the glory[J]. Journal of Mathematical Physics, 1969,10(1):125-176.
|
[26] |
Hikita H, Konishi Y. The absorption of SO2 into aqueous Na2CO3 solutions accompanied by the desorption of CO2[J]. Chemical Engineering Journal and the Biochemical Engineering Journal, 1983, 27(3):167-176.
|
[27] |
Ebrahimi S, Picioreanu C, Kleerebezem R, et al. Rate-based modelling of SO2 absorption into aqueous NaHCO3/Na2CO3. solutions accompanied by the desorption of CO2[J]. Chemical Engineering Science, 2003,58(16):3589-3600.
|
|
|
|