|
|
Research progress on environmental behaviors of neonicotinoids in the soil |
CHENG Hao-miao1, CHENG Ling1, ZHU Teng-yi1, WANG Liang2, WANG Yu-lin1, FENG Shao-yuan2 |
1. School of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China;
2. School of Hydraulic Science and Engineering, Yangzhou University, Yangzhou 225127, China |
|
|
Abstract Neonicotinoids have occupied the largest market share of pesticides in the world, soil is the source for neonicotinoids to enter the environmental system. Understanding the environmental behaviors of neonicotinoids in the soil is significant for exploring the environmental fate and ecological evaluation. The environmental behaviors of neonicotinoids in the soil were summarized and discussed, including adsorption, desorption and degradation. The influence mechanisms of the environmental factors was mainly analyzed, including physicochemical properties of neonicotinoids, soil composition and types, pH, temperature and water content. Moreover, the mechanisms of biodegradation, photolysis and hydrolysis were also analyzed. In the end, the future emphasis and direction of research on neonicotinoids were provided.
|
Received: 02 July 2019
|
|
|
|
|
[1] |
Tomizawa M, Casida J E. Neonicotinoid insecticide toxicology:mechanisms of selective action[J]. Annual Review of Pharmacology and Toxicology, 2005,45:247-268.
|
[2] |
Simon-Delso N, Amaral-Rogers V, Belzunces L P, et al. Systemic insecticides (neonicotinoids and fipronil):trends, uses, mode of action and metabolites[J]. Environmental Science and Pollution Research, 2015,22(1):5-34.
|
[3] |
Bass C, Denholm I, Williamson M S, et al. The global status of insect resistance to neonicotinoid insecticides[J]. Pesticide Biochemistry and Physiology, 2015,121:78-87.
|
[4] |
张敏恒,赵平,严秋旭,等.新烟碱类杀虫剂市场与环境影响[J]. 农药, 2012,51(12):859-862. Zhang M H, Zhao P, Yan Q X, et al. The market and environmental impact of the neonicotinoid insecticides[J]. Agrochemicals, 2012, 51(12):859-862.
|
[5] |
Anderson J C, Dubetz C, Palace V P. Neonicotinoids in the Canadian aquatic environment:a literature review on current use products with a focus on fate, exposure, and biological effects[J]. Science of the Total Environment, 2015,505:409-422.
|
[6] |
Morrissey C A, Mineau P, Devries J H, et al. Neonicotinoid contamination of global surface waters and associated risk to aquatic invertebrates:A review[J]. Environment International, 2015,74:291-303.
|
[7] |
Goulson D. REVIEW:An overview of the environmental risks posed by neonicotinoid insecticides[J]. Journal of Applied Ecology, 2013, 50(4):977-987.
|
[8] |
Forister M L, Cousens B, Harrison J G, et al. Increasing neonicotinoid use and the declining butterfly fauna of lowland California[J]. Biology Letters, 2016,12(8):20160475.
|
[9] |
Rundlöf M, Andersson G K S, Bommarco R, et al. Seed coating with a neonicotinoid insecticide negatively affects wild bees[J]. Nature, 2015,521(7550):77-80.
|
[10] |
Henry M, Beguin M, Requier F, et al. A common pesticide decreases foraging success and survival in honey bees[J]. Science, 2012, 336(6079):348-350.
|
[11] |
肖春旺.烟碱对东方粉蝶幼虫觅食行为的影响和毒害作用[J]. 中国环境科学, 1999,19(6):544-547. Xiao C W. Nicotine effect on foraging behavior and poisoning effect of Pieris canidia saparrman larva[J]. China Environmental Science, 1999,19(06):544-547.
|
[12] |
Hallmann C A, Foppen R P B, Van Turnhout C A M, et al. Declines in insectivorous birds are associated with high neonicotinoid concentrations[J]. Nature, 2014,511(7509):341-343.
|
[13] |
Van Dijk T C, Van Staalduinen M A, Van der Sluijs J P. Macro-invertebrate decline in surface water polluted with imidacloprid[J]. Plos One, 2013,8(5):e62374.
|
[14] |
梁禄,白雪,华祖林.烟碱类农药对水生生物的毒理研究进展[J]. 河海大学学报(自然科学版), 2017,45(2):122-128. Liang L, Bai X, Hua Z L. Advances in research on toxicity of neonicotinoids to aquatic organisms[J]. Journal of Hohai University (Natural Sciences), 2017,45(2):122-128.
|
[15] |
Bonmatin J M, Giorio C, Girolami V, et al. Environmental fate and exposure; neonicotinoids and fipronil[J]. Environmental Science and Pollution Research, 2015,22(1):35-67.
|
[16] |
Han W, Tian Y, Shen X. Human exposure to neonicotinoid insecticides and the evaluation of their potential toxicity:an overview[J]. Chemosphere, 2018,192:59-65.
|
[17] |
Zhang P, Ren C, Sun H, et al. Sorption, desorption and degradation of neonicotinoids in four agricultural soils and their effects on soil microorganisms[J]. Science of the Total Environment, 2018,615:59-69.
|
[18] |
孔德洋,葛峰,许静,等.3种烟碱类杀虫剂在土壤中的降解吸附特性及对地下水的影响[J]. 农业环境科学学报, 2011,30(11):2237-2241. Kong D Y, Ge F, Xu J, et al. The degradation and absorption of neonicotinoid pesticides in soils and its effect to groundwater[J]. Journal of Agro-Environment Science, 2011,30(11):2237-2241.
|
[19] |
Kurwadkar S, Wheat R, Mcgahan D G, et al. Evaluation of leaching potential of three systemic neonicotinoid insecticides in vineyard soil[J]. Journal of Contaminant Hydrology, 2014,170:86-94.
|
[20] |
张鹏,慕卫,刘峰,等.噻虫嗪在土壤中的吸附和淋溶特性[J]. 环境化学, 2015,34(4):705-711. Zhang P, Mu W, Liu F, et al. Adsorption and leaching of thiamethoxam in soil[J]. Environmental Chemistry, 2015,34(4):705-711.
|
[21] |
宣日成,王琪全,郑巍,等.吡虫啉在土壤中的吸附及作用机理研究[J]. 环境科学学报, 2000,20(2):198-201. Xuan R C, Wang Q Q, Zheng W, et al. Study on the adsorption of imidacloprid in soils and the interaction mechanism[J]. Acta Scientiae Circumstantiae, 2000,20(2):198-201.
|
[22] |
Northcott G L, Jones K C. Experimental approaches and analytical techniques for determining organic compound bound residues in soil and sediment[J]. Environmental Pollution, 2000,108(1):19-43.
|
[23] |
Jeschke P, Nauen R. Neonicotinoids-from zero to hero in insecticide chemistry[J]. Pest Management Science, 2008,64(11):1084-1098.
|
[24] |
Yang L, Zhao Y, Zhao C, et al. Design, synthesis, crystal structure, bioactivity, and molecular docking studies of novel sulfonylamidine-derived neonicotinoid analogs[J]. Medicinal Chemistry Research, 2014,23(12):5043-5057.
|
[25] |
许秀莹,宋稳成,王鸣华.氟啶胺在土壤中的吸附解吸与淋溶特性[J]. 中国环境科学, 2013,33(4):669-673. Xu X Y, Song W C, Wang M H. Adsorption-desorption and leaching characteristics of fluazinam in soils[J]. China Environmental Science, 2013,33(4):669-673.
|
[26] |
鲁垠涛,薛宏慧,张士超,等.长江流域岸边土中OCPs的残留特征,来源及风险评价[J]. 中国环境科学, 2019,39(9):3897-3904. Lu Y T, Xue H H, Zhang S C, et al. Residue characteristics, sources and risk assessment of organochlorine pesticides in riparian soils of the Yangtze River Basin[J]. China Environmental Science, 2019,39(9):3897-3904.
|
[27] |
Jeong C Y, Selim H M. Modeling adsorption-desorption kinetics of imidacloprid in soils[J]. Soil Science, 2010,175(5):214-222.
|
[28] |
Li Y, Su P, Li Y, et al. Adsorption-desorption and degradation of insecticides clothianidin and thiamethoxam in agricultural soils[J]. Chemosphere, 2018,207:708-714.
|
[29] |
Banerjee K, Patil S H, Dasgupta S, et al. Sorption of thiamethoxam in three Indian soils[J]. Journal of Environmental Science and Health, Part B, 2008,43(2):151-156.
|
[30] |
Ping L F, Chunrong Z, Yahong Z, et al. Imidacloprid adsorption by soils treated with humic substances under different pH and temperature conditions[J]. African Journal of Biotechnology, 2010, 9(13):1935-1940.
|
[31] |
Mader B T, Uwe-Goss K, Eisenreich S J. Sorption of nonionic, hydrophobic organic chemicals to mineral surfaces[J]. Environmental Science & Technology, 1997,31(4):1079-1086.
|
[32] |
Cox L, Koskinen W C, Celis R, et al. Sorption of imidacloprid on soil clay mineral and organic components[J]. Soil Science society of america journal, 1998,62(4):911-915.
|
[33] |
谢慧,王军,杜晓敏,等.新农药哌虫啶在三种典型土壤中的吸附与淋溶研究[J]. 土壤学报, 2017,54(1):118-127. Xie H, Wang J, Du S M, et al. Adsorption and leaching of paichongding a new pesticide in three typical soils[J]. Acta Pedologica Sinica, 2017,54(1):118-127.
|
[34] |
Iglesias A, Rocío López, Gondar D, et al. Adsorption of paraquat on goethite and humic acid-coated goethite[J]. Journal of Hazardous Materials, 2010,183(1-3):664-668.
|
[35] |
Mörtl M, Orsolya K, Darvas Béla, et al. Study on soil mobility of two neonicotinoid insecticides[J]. Journal of Chemistry, 2016:4546584.
|
[36] |
吴文铸,郭敏,孔德洋,等.噻虫胺在土壤中的吸附和淋溶特性[J]. 环境化学, 2012,31(11):1730-1735. Wu W T, Guo M, Kong D Y, et al. Adsorption and leaching of clothianidin in soil[J]. Environmental Chemistry, 2012,31(11):1730-1735.
|
[37] |
Flores-Céspedes F, González-Pradas E, Fernández-Pérez M, et al. Effects of dissolved organic carbon on sorption and mobility of imidacloprid in soil[J]. Journal of Environmental Quality, 2002, 31(3):880-888.
|
[38] |
Gondar D, Rocío López, Antelo J, et al. Effect of organic matter and pH on the adsorption of metalaxy and penconazole by soils[J]. Journal of hazardous materials, 2013,260C:627-633.
|
[39] |
Mandal A, Singh N, Purakayastha T J. Characterization of pesticide sorption behaviour of slow pyrolysis biochars as low cost adsorbent for atrazine and imidacloprid removal[J]. Science of the Total Environment, 2017,577:376-385.
|
[40] |
Choumane F Z, Benguella B. Removal of acetamiprid from aqueous solutions with low-cost sorbents[J]. Desalination and Water Treatment, 2016,57(1):419-430.
|
[41] |
张传琪,宋稳成,王鸣华.烯啶虫胺在土壤中的吸附与迁移行为[J]. 江苏农业学报, 2012,28(3):534-537. Zhang C Q, Song W C, Wang M H. Sorption and migration of nitenpyram in soils[J]. Jiangsu Journal of Agricultural Sciences, 2012,28(3):534-537.
|
[42] |
Cox L, Koskinen W C, Yen P Y. Influence of soil adsorption desorption of imidacloprid[J]. Journal of Environmental Science and Health Part B, 1998,33(2):123-134.
|
[43] |
Mulligan R A, Parikh S J, Tjeerdema R. S. Abiotic partitioning of clothianidin under simulated rice field conditions[J]. Pest Management Science, 2014,71(10):1419-1424.
|
[44] |
Broznic D, Milin C. Effects of temperature on sorption-desorption processes of imidacloprid in soils of croatian coastal regions[J]. Journal of Environmental Science and Health. Part B:Pesticides, Food Contaminants, and Agricultural Wastes, 2012,47(8):779-794.
|
[45] |
Main A R, Headley J V, Peru K M, et al. Widespread use and frequent detection of neonicotinoid insecticides in wetlands of Canada's Prairie Pothole Region[J]. Plos One, 2014,9(3):e92821.
|
[46] |
Bonmatin, J M, Noome D A, Moreno H, et al. A survey and risk assessment of neonicotinoids in water, soil and sediments of Belize[J]. Environmental pollution, 2019,249:949-958.
|
[47] |
Zhang C, Tian D, Yi X H, et al. Occurrence, distribution and seasonal variation of five neonicotinoid insecticides in surface water and sediment of the Pearl Rivers, South China[J]. Chemosphere, 2019,217:437-446.
|
[48] |
Broznic D, Marinic J, Tota M, et al. Hysteretic behavior of imidacloprid sorption-desorption in soils of Croatian coastal regions[J]. Soil and Sediment Contamination:An International Journal, 2012, 21(7):850-871.
|
[49] |
Burton E D, Phillips I R, Hawker D W. Sorption and desorption behavior of tributyltin with natural sediments[J]. Environmental Science & Technology, 2005,38(24):6694-6700.
|
[50] |
Martin S M, Kookana R S, Zwieten L V, et al. Marked changes in herbicide sorption-desorption upon ageing of biochars in soil[J]. Journal of Hazardous Materials, 2012,231:70-78.
|
[51] |
Papiernik S K, Koskinen W C, Cox L, et al. Sorption−desorption of imidacloprid and its metabolites in soil and vadose zone materials[J]. Journal of Agricultural and Food Chemistry, 2006,54(21):8163-8170.
|
[52] |
Han L, Ge Q, Mei J, et al. Adsorption and desorption of carbendazim and thiamethoxam in five different agricultural soils[J]. Bulletin of Environmental Contamination and Toxicology, 2019,102(4):550-554.
|
[53] |
Berglöf T, Dung T V, Kylin H, et al. Carbendazim sorption-desorption in Vietnamese soils[J]. Chemosphere, 2002,48(3):267-273.
|
[54] |
Sheng G, Yang Y, Huang M, et al. Influence of pH on pesticide sorption by soil containing wheat residue-derived char[J]. Environmental Pollution, 2005,134(3):457-463.
|
[55] |
Fernández-Bayo J D, Nogales R, Romero E. Improved retention of imidacloprid (Confidor((R))) in soils by adding vermicompost from spent grape marc[J]. Science of the Total Environment, 2007, 378(1/2):95-100.
|
[56] |
Celis R, Koskinen W C. Characterization of pesticide desorption from soil by the isotopic exchange technique[J]. Soil Science Society of America Journal, 1999,63(6):1659-1666.
|
[57] |
Oliveira R S, Koskinen W C, Werdin N R, et al. Sorption of imidacloprid and its metabolites on tropical soils[J]. Journal of Environmental Science and Health Part B-Pesticides Food Contaminants and Agricultural Wastes, 2000,35(1):39-49.
|
[58] |
Radolinski J, Wu J X, Xia K, et al. Plants mediate precipitation-driven transport of a neonicotinoid pesticide[J]. Chemosphere, 2019,222:445-452.
|
[59] |
Zhao R, Ma X X, Xu J, et al. Removal of the pesticide imidacloprid from aqueous solution by biochar derived from peanut shell[J]. Bioresources, 2018,13(3):5656-5669.
|
[60] |
Hussain S, Hartley C J, Shettigar M, et al. Bacterial biodegradation of neonicotinoid pesticides in soil and water systems[J]. FEMS Microbiology Letters, 2016,363(23):fnw252.
|
[61] |
潘声旺,雷志华,吴云霄,等.苏丹草根分泌物在有机氯农药降解过程中的作用[J]. 中国环境科学, 2017,37(8):3072-3079. Pang S W, Lei Z H, Wu Y X, et al. Effect of exudates from sorghum sudanense grass roots on degradation of organochlorine pesticides in soils[J]. China Environmental Science,2017,37(8):3072-3079.
|
[62] |
宋超,周杨全,李义强,等.三种新烟碱类杀虫剂在土壤中的残留降解及影响因子[J]. 农药学学报, 2016,18(6):738-744. Song C, Zhou Y Q, Li Y Q, et al. Residue degradation and influencing factors of three neonicotinoids insecticides in soil[J]. Chinese Journal of Pesticide Science, 2016,18(6):738-744.
|
[63] |
Sharma S, Singh B, Gupta V K. Assessment of imidacloprid degradation by soil-isolated Bacillus alkalinitrilicus[J]. Environmental Monitoring and Assessment, 2014,186(11):7183-7193.
|
[64] |
Gupta M, Mathur S, Sharma T K, et al. A study on metabolic prowess of Pseudomonas sp. RPT 52 to degrade imidacloprid, endosulfan and coragen[J]. Journal of Hazardous Materials, 2016,301:250-258.
|
[65] |
Lu T Q, Mao S Y, Sun S L, et al. Regulation of hydroxylation and nitroreduction pathways during metabolism of the neonicotinoid insecticide imidacloprid by pseudomonas putida[J]. Journal of Agricultural and Food Chemistry, 2016,64(24):4866-4875.
|
[66] |
Mohammed Y M M, Badawy M E I. Biodegradation of imidacloprid in liquid media by an isolated wastewater fungus, Aspergillus terreus YESM3[J]. Journal of Environmental Science and Health, Part B, 2017,52(10):752-761.
|
[67] |
Sabourmoghaddam N, Zakaria M P, Omar D. Evidence for the microbial degradation of imidacloprid in soils of Cameron Highlands[J]. Journal of the Saudi Society of Agricultural Sciences, 2014,14(2):182-188.
|
[68] |
Sarkar M A, Roy S, Kole R K, et al. Persistence and metabolism of imidacloprid in different soils of West Bengal[J]. Pest Management Science:formerly Pesticide Science, 2001,57(7):598-602.
|
[69] |
Kanjilal T, Bhattacharjee C, Datta S. Bio-degradation of acetamiprid from wetland wastewater using indigenous Micrococcus luteus strain SC 1204:Optimization, evaluation of kinetic parameter and toxicity[J]. Journal of Water Process Engineering, 2015,6:21-31.
|
[70] |
Wu J, Wei H, Xue J. Degradation of imidacloprid in Chrysanthemi Flos and soil[J]. Bulletin of Environmental Contamination & Toxicology, 2012,88(5):776-780.
|
[71] |
Shi Z, Dong W, Xin F, et al. Characteristics and metabolic pathway of acetamiprid biodegradation by Fusarium sp. strain CS-3 isolated from soil[J]. Biodegradation, 2018,29(6):593-603.
|
[72] |
Phugare S S, Kalyani D C, Gaikwad Y. B, et al. Microbial degradation of imidacloprid and toxicological analysis of its biodegradation metabolites in silkworm (Bombyx mori)[J]. Chemical Engineering Journal, 2013,230:27-35.
|
[73] |
Akoijam R, Singh B. Biodegradation of imidacloprid in sandy loam soil by Bacillus aerophilus[J]. International Journal of Environmental Analytical Chemistry, 2015,95(8):730-743.
|
[74] |
Phugare S S, Jadhav J P. Biodegradation of acetamiprid by isolated bacterial strain Rhodococcus sp. BCH2 and toxicological analysis of its metabolites in silkworm (Bombax mori)[J]. Clean-Soil, Air, Water, 2015,43(2):296-304.
|
[75] |
Hu G, Zhao Y, Liu B, et al. Isolation of an indigenous imidacloprid-degrading bacterium and imidacloprid bioremediation under simulated in situ and ex situ conditions[J]. Journal of Microbiology and Biotechnology, 2013,23(11):1617-1626.
|
[76] |
Chen J, Zhou S, Rong Y, et al. Pyrosequencing reveals bacterial communities and enzyme activities differences after application of novel chiral insecticide paichongding in aerobic soils[J]. Applied Soil Ecology, 2017,112:18-27.
|
[77] |
Guo L, Fang W W, Guo L L, et al. Biodegradation of the neonicotinoid insecticide acetamiprid by Actinomycetes Streptomyces canus CGMCC 13662 and characterization of the novel nitrile hydratase involved[J]. Journal of agricultural and food chemistry, 2019,67(21):5922-5931.
|
[78] |
Wang G, Yue W, Liu Y, et al. Biodegradation of the neonicotinoid insecticide acetamiprid by bacterium Pigmentiphaga sp. strain AAP-1 isolated from soil[J]. Bioresource Technology, 2013,138:359-368.
|
[79] |
Cai Z, Ma J, Wang J, et al. Aerobic biodegradation kinetics and pathway of the novel cis-nitromethylene neonicotinoid insecticide paichongding in yellow loam and Huangshi soils[J]. Applied Soil Ecology, 2016,98:150-158.
|
[80] |
范银君,史雪岩,高希武.新烟碱类杀虫剂吡虫啉和噻虫嗪的代谢研究进展[J]. 农药学学报, 2012,14(6):587-596. Fan Y J, Shi X Y, Gao X W. Research progresses on the metabolism of neonicotinoids imidacloprid and thiamethoxam[J]. Chinese Journal of Pesticide Science, 2012,14(6):587-596.
|
[81] |
Kandil M M, Trigo C, Koskinen W C, et al. Isolation and characterization of a novel imidacloprid-degrading Mycobacterium sp. Strain MK6 from an Egyptian Soil[J]. Journal of Agricultural and Food Chemistry, 2015,63(19):4721-4727.
|
[82] |
Gopal M, Dutta D, Jha S K, et al. Biodegradation of imidacloprid and metribuzin by Burkholderia cepacia strain CH9[J]. Pesticide Research Journal, 2011,23(1):36-40.
|
[83] |
Ma Y, Zhai S, Mao S Y, et al. Co-metabolic transformation of the neonicotinoid insecticide imidacloprid by the new soil isolate Pseudoxanthomonas indica CGMCC 6648[J]. Journal of Environmental Science and Health, Part B, 2014,49(9):661-670.
|
[84] |
Sharma T, Rajor A, Toor A P. Degradation of imidacloprid in liquid by Enterobacter sp. strain ATA1 using co-metabolism[J]. Bioremediation Journal, 2014,18(3):227-235.
|
[85] |
Shetti A A, Kaliwal R B, Kaliwal B B. Imidacloprid induced intoxication and its biodegradation by soil isolate Bacillus weihenstephanensis[J]. British Biotechnology Journal, 2014,4(9):957-969.
|
[86] |
Wang J, Hirai H, Kawagishi H. Biotransformation of acetamiprid by the white-rot fungus Phanerochaete sordida YK-624[J]. Applied microbiology and biotechnology, 2012,93(2):831-835.
|
[87] |
Yang H, Wang X, Zheng J, et al. Biodegradation of acetamiprid by Pigmentiphaga sp. D-2 and the degradation pathway[J]. International Biodeterioration & Biodegradation, 2013,85:95-102.
|
[88] |
Wang G, Chen X, Yue W, et al. Microbial Degradation of Acetamiprid by Ochrobactrum sp. D-12 isolated from contaminated soil[J]. Plos One, 2013,8(12):e82603.
|
[89] |
Wang G, Zhao Y, Gao H, et al. Co-metabolic biodegradation of acetamiprid by Pseudoxanthomonas sp. AAP-7 isolated from a long-term acetamiprid-polluted soil[J]. Bioresource Technology, 2013,150(3):259-265.
|
[90] |
Tang H, Li J, Hu H, et al. A newly isolated strain of Stenotrophomonas sp. hydrolyzes acetamiprid, a synthetic insecticide[J]. Process Biochemistry, 2012,47(12):1820-1825.
|
[91] |
Yao X H, Min H. Isolation, characterization and phylogenetic analysis of a bacterial strain capable of degrading acetamiprid[J]. Journal of Environmental Sciences, 2006,18(1):141-146.
|
[92] |
Zhou L Y, Zhang L J, Sun S L, et al. Degradation of the neonicotinoid insecticide acetamiprid via the N-carbamoylimine derivate (IM-1-2) mediated by the nitrile hydratase of the nitrogen-fixing bacterium Ensifer meliloti CGMCC 7333[J]. Journal of agricultural and food chemistry, 2014,62(41):9957-9964.
|
[93] |
Sun S L, Fan Z X, Zhao Y X, et al. A novel nutrient deprivation-induced neonicotinoid insecticide acetamiprid degradation by Ensifer adhaerens CGMCC 6315[J]. Journal of Agricultural and Food Chemistry, 2019,67(1):63-71.
|
[94] |
Sun S L, Yang W L, Guo J J, et al. Biodegradation of the neonicotinoid insecticide acetamiprid in surface water by the bacterium Variovorax boronicumulans CGMCC 4969 and its enzymatic mechanism[J]. Rsc Advances, 2017,7(41):25387-25397.
|
[95] |
Hegde D R, Manoharan T, Sridar R. Identification and characterization of bacterial isolates and their role in the degradation of neonicotinoid insecticide thiamethoxam[J]. Journal of Pure and Applied Microbiology, 2017,11(1):393-400.
|
[96] |
Rana S, Jindal V, Mandal K, et al. Thiamethoxam degradation by Pseudomonas and Bacillus strains isolated from agricultural soils[J]. Environmental Monitoring & Assessment, 2015,187(5):300.
|
[97] |
Zhou G C, Wang Y, Zhai S, et al. Biodegradation of the neonicotinoid insecticide thiamethoxam by the nitrogen-fixing and plant-growth-promoting rhizobacterium Ensifer adhaerens strain TMX-23[J]. Applied Microbiology and Biotechnology, 2013,97(9):4065-4074.
|
[98] |
Pandey G, Dorrian S J, Russell R J, et al. Biotransformation of the neonicotinoid insecticides imidacloprid and thiamethoxam by Pseudomonas sp. 1G[J]. Biochemical & Biophysical Research Communications, 2009,380(3):710-714.
|
[99] |
Myresiotis C K, Vryzas Z, Papadopoulou-Mourkidou E. Biodegradation of soil-applied pesticides by selected strains of plant growth-promoting rhizobacteria (PGPR) and their effects on bacterial growth[J]. Biodegradation, 2012,23(2):297-310.
|
[100] |
Dai Y J, Ji W W, Chen T, et al. Metabolism of the neonicotinoid insecticides acetamiprid and thiacloprid by the yeast Rhodotorula mucilaginosa strain IM-2[J]. Journal of Agricultural and Food Chemistry, 2010,58(4):2419-2425.
|
[101] |
Zhao Y J, Dai Y J, Yu, C G, et al. Hydroxylation of thiacloprid by bacterium Stenotrophomonas maltophilia CGMCC1.1788[J]. Biodegradation, 2009,20(6):761-768.
|
[102] |
Ge F, Zhou L Y, Wang Y, et al. Hydrolysis of the neonicotinoid insecticide thiacloprid by the N2-fixing bacterium Ensifer meliloti CGMCC 7333[J]. International Biodeterioration & Biodegradation, 2014,93:10-17.
|
[103] |
Zhang H J, Zhou Q W, Zhou G-C, et al. Biotransformation of the neonicotinoid insecticide thiacloprid by the bacterium Variovorax boronicumulans strain J1 and mediation of the major metabolic pathway by nitrile hydratase[J]. Journal of Agricultural and Food Chemistry, 2012,60(1):153-159.
|
[104] |
Wang X, Xue L, Chang S, et al. Bioremediation and metabolism of clothianidin by mixed bacterial consortia enriched from contaminated soils in Chinese greenhouse[J]. Process Biochemistry, 2019,78:114-122.
|
[105] |
Mori T, Wang J, Tanaka Y, et al. Bioremediation of the neonicotinoid insecticide clothianidin by the white-rot fungus Phanerochaete sordida[J]. Journal of hazardous materials, 2016,321:586-590.
|
[106] |
Parte S G and Kharat A S. Aerobic degradation of clothianidin to 2-chloro-methyl thiazole and methyl 3-(thiazole-yl) methyl guanidine produced by Pseudomonas stutzeri smk[J]. Journal of Environmental and Public Health, 2019,4807913.
|
[107] |
蔡志强,荣艳,陈杰,等.新烟碱类杀虫剂哌虫啶降解菌P4-7的筛选、鉴定及其降解特性的研究[J]. 常州大学学报(自然科学版), 2016,28(4):87-92. Cai Z Q, Rong Y, Chen J, et al. Isolation, identification and degradation characteristics of a novel cis-nitromethylene neonicotinoid insecticide paichongding degrading strain P4-7[J]. Journal of Changzhou University (Natural Science Edition), 2016, 28(4):87-92.
|
[108] |
Burrows H D, Canle M, Santaballa J A, et al. Reaction pathways and mechanisms of photodegradation of pesticides[J]. Journal of Photochemistry and Photobiology B-Biology, 2002,67(2):71-108.
|
[109] |
Mahapatra B, Adak T, Patil N K B, et al. Effect of abiotic factors on degradation of imidacloprid[J]. Bulletin of Environmental Contamination and Toxicology, 2017,99(4):475-480.
|
[110] |
Rafique N, Tariq S R, Abbas M. Effect of Fe2+, amendment on photodegradation kinetics of imidacloprid in moist soil[J]. Environmental Earth Sciences, 2014,71(6):2869-2874.
|
[111] |
Li Y, Li Y, Liu Y, et al. Photodegradation of clothianidin and thiamethoxam in agricultural soils[J]. Environmental Science and Pollution Research, 2018,25(31):31318-31325.
|
[112] |
郑立庆,赵源,张磊磊,等.呋虫胺在水中的光化学降解[J]. 河南师范大学学报(自然科学版), 2015,43(1):93-99. Zheng L Q, Zhao Y, Zhang L L, et al. Photochemistry degradation of dinotefuran in water[J]. Journal of Henan Normal University (Natural Science Edition), 2015,43(1):93-99.
|
[113] |
谢国红,刘国光,孙德智,等.几种水溶性化合物对啶虫脒光解的影响[J]. 环境化学, 2008,27(1):29-32. Xie G H, Liu G G, Sun D Z, et al. Effects of dissolved compounds on photolysis of acetamiprid[J]. Environmental Chemistry, 2008,27(1):29-32.
|
[114] |
邓亚运,庄英滢,冯越,等.顺硝烯新烟碱杀虫剂环氧虫啶在水中的光降解[J]. 中国环境科学, 2016,36(4):1112-1118. Deng Y Y, Zhuang Y Y, Feng Y, et al. Photodegradation of cis-configuration neonicotinoid cycloxaprid in water[J]. China Environmental Science, 2016,36(4):1112-1118.
|
[115] |
郑巍,宣日成,刘维屏.新农药吡虫啉水解动力学和机理研究[J]. 环境科学学报, 1999,19(1):101-104. Zheng W, Xuan R C, Liu W P. Kinetics and mechanism of pesticide imidacloprid hydrolysis[J]. Acta Scientiae Circumstantiae, 1999, 19(1):101-104.
|
[116] |
Karmakar R, Singh S B, Kulshrestha G. Kinetics and mechanism of the hydrolysis of thiamethoxam[J]. Journal of Environmental Science and Health Part B Pesticides Food Contaminants and Agricultural Wastes, 2009,44(5):435-441.
|
[117] |
郑立庆,刘国光,孙德智.新型农药噻虫嗪的水解与光解研究[J]. 哈尔滨工业大学学报, 2006,38(6):1005-1008. Zheng L Q, Liu G G, Sun D Z. Study on the hydrolysis and photolysis of thiamethoxam[J]. Journal of Harbin Institute of Technology, 2006,38(6):1005-1008.
|
[118] |
张冲,葛峰,单正军,等.噻虫啉环境行为研究[J]. 农药, 2010, 49(11):830-833. Zhang C, Ge F, Shan Z J, et al. Study on environmental behavior of thiacloprid[J]. Agrochemicals, 2010,49(11):830-833.
|
[119] |
Todey S A, Fallon A M, Arnold W A, et al. Neonicotinoid insecticide hydrolysis and photolysis:Rates and residual toxicity[J]. Environmental Toxicology and Chemistry, 2018,37(11):2797-2809.
|
|
|
|