|
|
Relationship between particle size hygroscopic growth and scattering hygroscopic growth |
ZHANG Zhi-cha1, NI Chang-jian1, ZHANG Cheng-yu1, YANG Yin-shan1, DENG Ye2 |
1. Plateau Atmospheres and Environment Key Laboratory of Sichuan Province, College of Atmospheric Science, Chengdu University of Information Technology, Chengdu 610225, China; 2. Chengdu Academy of Environmental Sciences, Chengdu 610072, China |
|
|
Abstract By utilizing the ground-based monitored data at an hourly time step recorded by AURORA-3000 integrating nephelometer, AE-31 aethalometer and GRIMM180 environment particle monitor from October to December 2017 in Chengdu, as well as the coincidental environmental and meteorological data (including atmospheric visibility, relative humidity (RH) and NO2 mass concentration, respectively), researches in this paper were summarized as follows. Firstly, aerosols particle size hygroscopic growth factor Gf(RH) was retrieved by combining immune evolution algorithm with Mie scattering theory algorithm. Secondly, aerosols scattering hygroscopic growth factor f(RH) was measured with the aid of optical synthetic approach, and then, the relationship between Gf(RH) and f(RH) was further investigated. The results showed that both Gf(RH) and f(RH) grew mildly at RH<85%, while for RH>85%, the pattern changed to explosive growth. Sigmoid function f(RH)=17.34/(1+e-2.43·[Gf(RH)-2.15]) could well fit the variation of f(RH) with Gf(RH), and the determining coefficient (R2) and the mean relative error (MRE) between the fitted f(RH) and the measured values are 0.97and 4.01%, respectively. Subsequently, the aerosols scattering coefficient[bsp(RH)] and absorption coefficient[bap] during an evolution of haze were further simulated with Gf(RH) calculated by the sigmoid function, and the simulated values were in good agree with the measured values. The corresponding R2are respectively 0.99and 0.98, and the corresponding MRE are respectively 2.94% and 5.24%.
|
Received: 16 April 2020
|
|
|
|
|
[1] |
张小曳.中国大气气溶胶及其气候效应的研究[J]. 地球科学进展, 2007,22(1):12-16. Zhang X Y. Aerosol over China and their climate effect[J]. Advances in Earth Science, 2007,22(1):12-16.
|
[2] |
张泽宇,王甜甜,范萌,等.北京地区基于化学组分的夏季气溶胶吸湿特性[J]. 中国环境科学, 2020,40(6):2353-2360. Zhang Z Y, Wang T T, Fan M, et al. An experimental study on aerosol hygroscopic properties during the summer in Beijing based on chemical composition[J]. China Environmental Science, 2020,40(6):2353-2360.
|
[3] |
刘新罡,张远航.大气气溶胶吸湿性质国内外研究进展[J]. 气候与环境研究, 2010,15(6):808-816. Liu X G, Zhang Y H. Advances in research on aerosol hygroscopic properties at home and abroad[J]. Climatic and Environmental Research, 2010,15(6):808-816.
|
[4] |
姚青,蔡子颖,韩素芹,等.天津冬季相对湿度对气溶胶浓度谱分布和大气能见度的影响[J]. 中国环境科学, 2014,34(3):596-603. Yao Q, Cai Z Y, Han S Q, et al. Effects of relative humidity on the aerosol size distribution and visibility in the winter in Tianjin[J]. China Environmental Science, 2014,34(3):596-603.
|
[5] |
李雅雯,陈健,张海龙,等.基于GOCI数据的霾天气气溶胶辐射强迫的日内变化——以长江三角洲为例[J]. 中国环境科学, 2019, 39(2):497-505. Li Y W, Chen J, Zhang H L, et al. Diurnal variations of aerosol radiative effect under haze weather condition using GOCI data-A case study of Yangtze River Delta[J]. China Environmental Science, 2019, 39(2):497-505.
|
[6] |
孙俊英,张璐,沈小静,等.大气气溶胶散射吸湿增长特性研究进展[J]. 气象学报, 2016,74(5):672-682. Sun J Y, Zhang L, Shen X J, et al. A review of the effects of relative humidity on aerosol scattering properties[J]. Acta Meteorologica Sinica, 2016,74(5):672-682.
|
[7] |
Xu J. Aerosol chemical, physical, and radiative characteristics near a desert source region of northwest China during ACE-Asia[J]. Journal of Geophysical Research, 2004,109(D19):D19S03.
|
[8] |
程雅芳.珠江三角洲新垦地区气溶胶的辐射特性——基于观测的模型研究[D]. 北京;北京大学, 2007. Cheng Y F. Aerosol radiative properties at XinKen in Pearl River Delta of China:an observation based numerical study[D]. Beijing; Peking University, 2007.
|
[9] |
钱小东,张启磊,徐学哲,等.气溶胶吸湿和挥发特性测量的VH-TDMA装置研究[J]. 中国环境科学, 2017,37(4):1269-1275. Qian X D, Zhang Q L, Xu X Z, et al. Development of a volatility hygroscopic tandem differential mobility analyzer (VH-TDMA) for the measurement of aerosol thermal and hygroscopic properties[J]. China Environmental Science, 2017,37(4):1269-1275.
|
[10] |
Tan H B, Li L, Fan S J, et al. Aerosol optical properties and mixing state of black carbon in the Pearl River Delta, China[J]. Atmospheric Environment, 2016,131:196-208.
|
[11] |
Kasten F. Visibility forecast in the phase of pre-condensation[J]. Tellus, 1969,21(5):631-635.
|
[12] |
Kotchenruther R A, Hobbs P V. Humidification factors of aerosols from biomass burning in Brazi l[J]. Journal of Geophysical Research, 1998,103(D24):32081.
|
[13] |
郝增周,龚芳,潘德炉,等.沙尘气溶胶粒子群的散射和偏振特性[J]. 光学学报, 2012,32(1):0101002. Hao Z Z, Gong F, Pan D L, et al. Scattering and polarization characteristics of dust aerosol particles[J]. Acta Optica Sinica, 2012, 32(1):0101002.
|
[14] |
徐博,黄印博,范承玉,等.吸湿性均匀混合气溶胶粒子等效吸收系数计算分析[J]. 光学学报, 2013,33(1):0101001. Xu B, Huang Y B, Fan C Y, et al. Calculation of equivalent absorption coefficient of uniformly mixed hygroscopic aerosol particles[J]. Acta Optica Sinica, 2013,33(1):0101001.
|
[15] |
Köhler H. The nucleus in and the growth of hygroscopic droplets[J]. Transactions of the Faraday Society, 1936,32:1152-1161.
|
[16] |
Tan H B, Cai M, Fan Q, et al. An analysis of aerosol liquid water content and related impact factors in Pearl River Delta[J]. Science of The Total Environment, 2017,579:1822-1830.
|
[17] |
Chen J, Zhao C S, Ma N, et al. A parameterization of low visibilities for hazy days in the North China Plain[J]. Atmospheric Chemistry and Physics, 2012,12:4935-4950.
|
[18] |
Hännel G. The physical chemistry of atmospheric particles[J]. Hygroscopic Aerosols, 1984:1-20.
|
[19] |
Hännel G. New results concerning the dependence of visibility on relative and their significance in a model for visibility forecast[J]. Contributions to Atmospheric Physics, 1971,44:137-167.
|
[20] |
孙景群.湿气溶胶的光散射特性[J]. 高原气象, 1983,2(3):49-54. Sun J Q. Relationship between visibility and relative humidity[J]. Plateau Meteorology, 1983,2(3):49-54.
|
[21] |
张智察,倪长健,邓也,等.免疫进化算法反演均匀混合气溶胶吸湿增长因子[J]. 中国环境科学, 2020,40(3):1008-1015. Zhang Z C, Ni C J, Deng Y, et al. Retrieval of hygroscopic growth factorof uniformly mixedaerosol particles based on immune evolution algorithm[J]. China Environmental Science, 2020,40(3):1008-1015.
|
[22] |
陈一娜,赵普生,何迪,等.北京地区大气消光特征及参数化研究[J]. 环境科学, 2015,36(10):42-49. Chen Y N, Zhao P S, He D, et al. Characteristics and parameterization for atmospheric extinction coefficient in Beijing[J]. Environmental Science, 2015,36(10):42-49.
|
[23] |
Bodhaine B A. Aerosol absorption measurements at Barrow, Mauna Loa and the south pole[J]. Journal of Geophysical Research, 1995, 100(D5):8967-8975.
|
[24] |
李梅芳,叶芝祥.基于太阳光度计的成都双流地区夏季气溶胶光学特性研究[J]. 成都信息工程学院学报, 2014,29(2):213-216. Li M F, Ye Z X. The Studies of Aerosol Optical Properties of Chengdu Shuangliu in Summer Based on the Sun Photometer[J]. Journal of Chengdu University of Information Technology, 2014,29(2):213-216.
|
[25] |
Bergstrom R W, Russell P B, Hignett P. Wavelength dependence of the absorption of black carbon particles:Predictions and results from the TARFOX experiment and implications for the aerosol single scattering albedo[J]. Journal of the Atmospheric Sciences, 2002,59(3):567-577.
|
[26] |
Penndorf R. Tables of the Refractive Index for standard air and the rayleigh scattering coefficient for the spectral region between 0.2 and 20.0μ and their application to atmospheric optics[J]. Journal of the Optical Society of America, 1957,47(2):176-182.
|
[27] |
Sloane C S, Wolf G T. Prediction of ambient light scattering using a physical model responsive to relative humidity validation with measurements from Detroit[J]. Atmospheric Environment, 1985,19(4):669-680.
|
[28] |
Zhang L, Sun J Y, Shen X J, et al. Observations of relative humidity effects on aerosol light scattering in the Yangtze River Delta of China[J]. Atmospheric Chemistry and Physics, 2015,15(14):8439-8454.
|
[29] |
Chen J, Zhao C S, Ma N, et al. Aerosol hygroscopicity parameter derived from the light scattering enhancement factor measurements in the North China Plain[J]. Atmospheric Chemistry and Physics, 2014,14(15):8105-8118.
|
[30] |
Qi X F, Sun J Y, Zhang L, et al. Aerosol Hygroscopicity during the Haze Red-Alert Period in December 2016at a Rural Site of the North China Plain[J]. Journal of Meteorological Research, 2018,32(1):38-48.
|
[31] |
Yan P, Pan X, Tang J, et al. Hygroscopic growth of aerosol scattering coefficient:A comparative analysis between urban and suburban sites at winter in Beijing[J]. China Particuology, 2009,7(1):52-60.
|
[32] |
张智察,倪长健,邓也,等.两种气溶胶消光吸湿增长因子的适用性分析[J]. 激光与光电子学进展, 2020,57(9):090103. Zhang Z C, Ni C J, Yin D D, et al. Applicability of the two kinds of aerosol extinction hygroscopic growth factors[J]. Laser & Optoelectronics Progress, 2020,57(9):090103.
|
[33] |
杨寅山,倪长健,邓也,等.成都市冬季大气消光系数及其组成的特征研究[J]. 环境科学学报, 2019,39(5):1425-1432. Yang Y S, Ni C J, Deng Y, et al. Characteristics of atmospheric extinction coefficient and its components in winter in Chengdu[J]. Acta Scientiae Circumstantiae, 2019,39(5):1425-1432.
|
[34] |
陶金花,王子峰,徐谦,等.北京地区颗粒物质量消光吸湿增长模型研究[J]. 遥感学报, 2015,19(1):12-24. Tao J H, Wang Z F, Xu Q, et al. Particulate matter mass extinction hygroscopic growth model in Beijing[J]. Journal of Remote Sensing, 2015,19(1):12-24.
|
[35] |
刘新罡,张远航.基于观测的大气气溶胶散射吸湿增长因子模型研究-以2006CARE Beijing加强观测为例[J]. 中国环境科学, 2009, 29(12):1243-1248. Liu X G, Zhang Y H. Modelling research on the aerosol scattering hygroscopic growth factor based on measurement-Taking 2006 CAREBeijing campaign for example[J]. China Environment Science, 2009,29(12):1243-1248.
|
[36] |
刘凡,谭钦文,江霞,等.成都市冬季相对湿度对颗粒物浓度和大气能见度的影响[J]. 环境科学, 2018,39(4):1466-1472. Liu F, Tan Q W, Jiang X, et al. Effect of relative humidity on particulate matter concentration and visibility during winter in Chengdu[J]. Environmental Science, 2018,39(4):1466-1472.
|
|
|
|