|
|
Movement and transformation of nitrogen in clay unsaturated zone under shallow groundwater table:In-situ experiment |
PU Fang1, HUANG Jin-ting1, SONG Ge1, WANG Jia-wei1, LI Zong-ze1, TIAN Hua1, ZHANG Fang2, SUN Fang-qiang2 |
1. Xi'an University of Science and Technology, Xi'an 710054, China; 2. Xi'an Center of Geological Survey, China Geological Survey, Xi'an 710054, China |
|
|
Abstract In this paper, the movement and transformation of nitrogen was investigated in clay unsaturated zone with shallow groundwater depth via in-situ experiment. Results show that, The depth to groundwater table fluctuated between 145.9cm and 173.6cm, and the calculated capillary height of groundwater reaches 297.0cm which induces high soil water content in soil profile, varied between 0.30~0.45cm3/cm3 except for near surface layer; The concentration of NH4+-N and NO3--N was of the maximum value at 155cm depth in the soil profile, 1.43 and 23.00mg/kg, respectively, which exceeded the background values of 1.13 and 21.05mg/kg; Under the condition of nearly saturated of the clay soil, the NH4+-N and NO3--N moved from ground surface to the depth of 155cm within one day. The research results indicated that the blocking effect of clay on the movement of nitrogen pollutants is weakened on shallow groundwater table depth.
|
Received: 01 November 2021
|
|
|
|
|
[1] |
Mohammad N A, Jagath J K. Modeling nitrate contamination of groundwater in agricultural watersheds[J]. Journal of Hydrology, 2007,343(3/4):211-229.
|
[2] |
Gastal F, Lemaire G. N uptake and distribution in crops:an agronomical and ecophysiological perspective[J]. Journal of Experimental Botany, 2002,53(370):789-799.
|
[3] |
Wang Z, Li S. Effects of N and P fertilization on plant growth and nitrate accumulation in vegetables[J]. Journal of Plant Nutrition, 2004,27(3):539-556.
|
[4] |
Ding J T, Xi B D, Gao R T, et al. Identifying diffused nitrate sources in a stream in an agricultural field using a dual isotopic approach[J]. Science of the Total Environment, 2014,484:10-18.
|
[5] |
Ditz D, Ranganathan J. Global developments on environmental performance indicators[J]. Corporate Environmental Strategy, 1998, 5(3):47-52.
|
[6] |
张桃林,李忠佩,王兴祥,等.高度集约农业利用导致的土壤退化及其生态环境效应[J].土壤学报, 2006,75(5):843-850.Zhang T L, Li Z P, Wang X X, et al. Soil degradation and its eco-environmental impact under highly-intensified agriculture[J]. Acta Pedologica Sinica, 2006,75(5):843-850.
|
[7] |
刘超.模拟降雨条件下非均质包气带中"三氮"迁移转化规律研究[D].中国地质大学(北京), 2011.Liu C. Study of accumulation and transformation of nitrogen in the heterogeneous unsaturated zone with stimulated rainfall[D]. China University of Geosciences (Beijing), 2011.
|
[8] |
孟春香,贾树龙,唐玉霞.褐土、潮土中固定态铵含量与土壤理化性状的关系[J].河北农业科学, 2004,16(3):39-42.Meng C X, Jia S L, Tang Y X. Relationship between fixed ammonium and soil physical and chemical properties in sinnamon and fluvo-aquicsoils[J]. Journal of Hebei Agricultural Sciences, 2004,16(3):39-42.
|
[9] |
刘宏斌,李志宏,张云贵,等.北京平原农区地下水硝态氮污染状况及其影响因素研究[J].土壤学报, 2006,75(3):405-413.Liu H B, Li Z H, Zhang Y G, et al. Nitrate contamination of groundwater and its affecting factors in rural areas of Beijing plain[J]. Acta Pedologica Sinica, 2006,75(3):405-413.
|
[10] |
Ascott M J, Gooddy D C, Wang L, et al. Global patterns of nitrate storage in the vadose zone[J]. Nature Communications, 2017,8(1):153-226.
|
[11] |
He X H, Xu M G, Qiu G Y, et al. Use of 15N stable isotope to quantify nitrogen transfer between mycorrhizal plants[J]. Journal of Plant Ecology, 2009,2(3):107-118.
|
[12] |
杨静,肖天昀,李海波,等.江汉平原地下水中硝酸盐的分布及影响因素[J].中国环境科学, 2018,38(2):710-718.Yang J, Xiao T Y, Li H B, et al. Spatial distribution and influencing factors of the NO3-N concentration in groundwater in Jianghan Plain[J]. China Environmental Science, 2018,38(2):710-718.
|
[13] |
张云,张胜,刘长礼,等.包气带土层对氮素污染地下水的防护能力综述与展望[J].农业环境科学学报, 2006,25(S1):339-346.Zhang Y, Zhang S, Liu C L, et al. Prospect of capability of aeration zone in soil in prevention nitrogen from pollution of groundwater[J]. Journal of Agro-Environment Science, 2006,25(S1):339-346.
|
[14] |
刘鑫,左锐,孟利,等.地下水位上升过程硝态氮(硝酸盐)污染变化规律研究[J].中国环境科学, 2021,41(1):232-238.Liu X, Zuo R, Meng L, et al. Study on the variation law of nitrate pollution during the rise of groundwater level[J]. China Environmental Science, 2021,41(1):232-238.
|
[15] |
Humbert S, Tarnawski S, Freomin N, et al. Molecular detection of anammox bacteria in terrestrial ecosystems:distribution and diversity[J]. The ISME Journal, 2010,4:450-454.
|
[16] |
高太忠,付海燕.氮在河北平原包气带中的迁移转化机制[J].安全与环境学报, 2015,15(1):217-221.Gao T Z, Fu H Y. Migration and transformation regularity of nitrogen in vadose zone in Hebei plain[J]. Journal of Safety and Environment, 2015,15(1):217-221.
|
[17] |
Lee M, Lee K, Hyun Y, et al. Nitrogen transformation and transport modeling in groundwater aquifer[J]. Ecological Modeling, 2006,192(1/2):143-159.
|
[18] |
姜桂华,王文科.关中盆地包气带氮迁移转化数值模拟及预测[J].西北大学学报(自然科学版), 2007,95(5):825-829.Jiang G H, Wang W K. Numerical simulation and prediction of N transportation and transformation in unsaturated zone in Guanzhong Basin[J]. Journal of Northwest University (Natural Science Edition), 2007,95(5):825-829.
|
[19] |
杨亚茹,唐仲华.土壤中硝态氮迁移转化的数值模拟研究[J].人民长江, 2019,50(4):53-57.Yang Y R, Tang Z H. Numerical simulation study on nitrate-nitrogen transportation and transformation in soil[J]. Yangtze River, 2019, 50(4):53-57.
|
[20] |
刘健.三种质地土壤氮素淋溶规律研究[D].北京林业大学, 2010.Liu J. Study on nitrogen leaching regulations on three textures of soil[D]. Beijing forestry university, 2010.
|
[21] |
田路遥,王仕琴,魏守才,等.层状包气带黏土层厚度对硝态氮迁移的影响[J].农业工程学报, 2020,36(14):55-62.Tian L Y, Wang S Q, Wei S C, et al. Effect of the thickness of clay layer in the layered vadose zone on nitrate nitrogen migration[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(14):55-62.
|
[22] |
董佩,李阳,孙颖,等.包气带黏性土层对氮素污染地下水的防污性能试验研究[J].现代地质, 2016,30(3):688-694.Dong P, Li Y, Sun Y, et al. Experimental study on the filtration capability of clayey soilsinthevadosezone prevention nitrogen from polluting groundwater[J]. Geoscience, 2016,30(3):688-694.
|
[23] |
HJ/T166-2004土壤环境监测技术规范[S].HJ/T166-2004 The Technical Specification for soil Environmental monitoring[S].
|
[24] |
HJ634-2012土壤氨氮、亚硝酸盐氮、硝酸盐氮的测定氯化钾溶液提取-分光光度法[S].HJ634-2012 Soil-Determination of ammonium, nitrite and nitrate by extraction with potassium chloride solution-spectrophotometric methods[S].
|
[25] |
栗现文,周金龙,周念清,等.潜水高矿化度对粉质粘土毛细水上升的影响[J].干旱区资源与环境, 2016,30(7):192-196.Li X W, Zhou J L, Zhou N Q, et al. Effects of high TDS on capillary rise of phreatic water in silty clay soil[J]. Journal of Arid Land Resources and Environment, 2016,30(7):192-196.
|
[26] |
Sinishaw S G. Effects of Capillary Rise Saturation on Properties of Sub Grade Soil[J]. American Journal of Construction and Building Materials, 2021,5(2):32-49.
|
[27] |
Asaf B N, Shmuel A, Uri S,et al. Impact of ambient conditions on evaporation from porous media[J]. Water Resources Research, 2014,50(8):6696-6712.
|
|
|
|