|
|
Research trends in effects of antimony on crops based on bibliometrics |
LIU Lian-hua1, OUYANG Wei1,2, HE Meng-chang1, LIN Chun-ye1, CUI Xin-tong1 |
1. School of Environment, Beijing Normal University, Beijing 100875, China; 2. Advanced interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhuhai 519087, China |
|
|
Abstract In order to clarify the research status and development trends on effects of antimony on crops, the literature research was conducted in this field from 1991 to 2021 based on the database of Web of Science. The annual number of published literatures, the published number of main countries or regions, research institutions, keyword co-occurrence network, prominent keyword analysis, the co-citation network and key literatures were visually analyzed. Then, the future research development trend was summarized. Results showed that the total number of published literatures issued in this research field had shown a rapid growth trend during the period from 1991 to 2021. China, United States, Brazil, India, Italy, Spain and other countries, which were the main countries promoting this field development, published a large number of relevant literatures. The Chinese Academy of Sciences and the Chinese Academy of Agricultural Sciences were two Chinese research institutions among the top ten institutions in the number of publications, accounting for 10.5% of total amount. Based on the analysis of keyword co-occurrence network and keywords with the strongest citation bursts, the research hotspots on the impact of antimony on crops had developed from the impact of Sb on crop growth, yield and quality to the migration and transformation mechanism of Sb in soil, water, crops, sediments and other environments. The response mechanism of microbial community activity in soil and the risk assessment of antimony on human health had become research hotspots in recent years.
|
Received: 11 March 2022
|
|
|
|
|
[1] |
何孟常,万红艳.环境中锑的分布、存在形态及毒性和生物有效性[J].化学进展, 2004,16(1):131-135.He M C, Wan H Y.Distribution, speciation, toxicity and bioavailability of antimony in the environment[J].Progress in Chemistry, 2004,16(1):131-135.
|
[2] |
Filella M, Belzile N, Chen Y W.Antimony in the environment:a review focused on natural waters.I.Occurrence[J].Earth-Science Reviews, 2002,57:125-176.
|
[3] |
Okkenhaug G, Zhu Y G, Luo L, et al.Distribution, speciation and availability of antimony (Sb) in soils and terrestrial plants from an active Sb mining area[J].Environmental Pollution, 2011,159:2427-2434.
|
[4] |
Shtangeeva I., Bali R, Harris A.Bioavailability and toxicity of antimony[J].Journal of Geochemical Exploration, 2011,110:40-45.
|
[5] |
Feng R W, Wei C Y, Tu S X, et al.The uptake and detoxification of antimony by plants:A review[J].Environmental and Experimental Botany, 2013,96:28-34.
|
[6] |
Herath I, Vithanage M, Bundschuh J.Antimony as a global dilemma:Geochemistry, mobility, fate and transport[J].Environmental Pollution, 2017,223:545-559.
|
[7] |
宁增平,肖青相,蓝小龙,等.都柳江水系沉积物锑等重金属空间分布特征及生态风险[J].环境科学, 2017,38(7):2784-2792.Ning Z P, Xiao Q X, Lan X L, et al.Spatial distribution characteristics and potential ecological risk of antimony and selected heavy metals in sediments of Duliujiang river[J].Environmental Science, 2017,38(7):2784-2792.
|
[8] |
崔晓丹,王玉军,周东美.水分管理对污染土壤中砷锑形态及有效性的影响[J].农业环境科学学报, 2015,34(9):1665-1673.Cui X D, Wang Y J, Zhou D M.Influence of wetting-drying and flooding water managements on forms and availability of arsenic and antimony in Polluted Soils[J].Journal of Agro-Environment Science, 2015,34(9):1665-1673.
|
[9] |
刘碧君,吴丰昌,邓秋静,等.锡矿山矿区和贵阳市人发中锑、砷和汞的污染特征[J].环境科学, 2009,30(3):907-912.Liu B J, Wu F C, Deng Q J, et al.Pollution characteristics of antimony, arsenic and mercury in Human hair at Xikuangshan antimony mining area and Guiyang city, China[J].Environment Science, 2009,30(3):907-912.
|
[10] |
田贺忠,赵丹,何孟常,等.2005年中国燃煤大气锑排放清单[J].中国环境科学, 2010,30(11):1550-1557.Tian H Z, Zhao D, He M C, et al.Atmospheric antimony emission inventories from coal combustion in China in 2005[J].China Environmental Science, 2010,30(11):1550-1557.
|
[11] |
Ding J H, Zhang Y, Ma Y B, et al.Metallogenic characteristics and resource potential of antimony in China[J].Journal of Geochemical Exploration, 2021,230:106834.
|
[12] |
张龙,宋波,黄凤艳,等.湖南锡矿山周边土壤-农作物系统锑迁移转换特征及污染评价[J].环境科学, 2022,43(3):1554-1566.Zhang L, Song B, Huang F Y, et al.Characteristics of antimony migration and transformation and pollution evaluation in a soil-crop system around a tin mine in Hunan province[J].Environmental Science, 2022,43(3):1554-1566.
|
[13] |
郭文景,张志勇,符志友,等.锑的淡水水质基准及其对我国水质标准的启示[J].中国环境科学, 2020,40(4):1628-1636.Guo W J, Zhang Z Y, Fu Y Z, et al.Derivation of aquatic life water quality criteria for antimony in freshwater and its implication for water quality standard in China[J].China Environmental Science, 2020, 40(4):1628-1636.
|
[14] |
Zhao D J, Wang X Q.Investigating the spatial distribution of antimony geochemical anomalies located in the Yunnan-Guizhou-Guangxi region, China[J].Geochemistry, 2021,81:125829.
|
[15] |
Guo W J, Zhang Z Y, Wang H, et al.Exposure characteristics of antimony and coexisting arsenic from multi-path exposure in typical antimony mine area[J].Journal of Environmental Management, 2021, 289:112493.
|
[16] |
谢李娜,周建伟,郝春明,等.湘中锡矿山北矿区地下水化学特征及污染成因[J].地质科技情报, 2016,35(2):197-202.Xie L N, Zhou J W, Hao C M, et al.Hydrochemical characteristics and contaminative causes of groundwater in the north area of Xikuangshan Antimony mine, Hunan province[J].Geological Science and Technology Informaiton, 2016,35(2):197-202.
|
[17] |
Chang C Y, Li F B, Wang Q, et al.Bioavailability of antimony and arsenic in a flowering cabbage-soil system:Controlling factors and interactive effect[J].Science of the Total Environment, 2022,815:152920.
|
[18] |
孙福红,廖海清,陈艳卿,等.微囊藻对锑(V)生物吸附作用研究[J].中国环境科学, 2016,36(11):3383-3389.Sun F H, Liao H Q, Chen Y Q, et al.Studies on biosorption of antimony(V) by Microcystis[J].China Environmental Science, 2016, 36(11):3383-3389.
|
[19] |
何孟常,季海冰,赵承易,等.锑矿区土壤和植物中重金属污染初探[J].北京师范大学学报(自然科学版), 2002,38(3):417-420.He M C, Ji H B, Zhao C Y, et al.Preliminary study of heavy metal pollution in soil and plant near antimony mine area[J].Journal of Beijing Normal University (Natural Science), 2002,38(3):417-420.
|
[20] |
Pierart A, Shahid M, Sejalon-Delmas N, et al.Antimony bioavailability:Knowledge and research perspectives for sustainable agricultures[J].Journal of Hazardous Materials, 2015,289:219-234.
|
[21] |
Ren J H, Ma L Q, Sun H J, et al.Antimony uptake, translocation and speciation in rice plants exposed to antimonite and antimonate[J].Science of the Total Environment, 2014,475:83-89.
|
[22] |
Natasha M S, Khalid S, Dumat C, et al.Biogeochemistry of antimony in soil-plant system:Ecotoxicology and human health[J].Applied Geochemistry, 2019,106:45-49.
|
[23] |
Abbas G, Murtaza B, Bibi I, et al.Arsenic uptake, toxicity, detoxification, and speciation in plants:physiological, biochemical, and molecular aspects[J].International Journal of Environmental Research and Public Health, 2018,15:59.
|
[24] |
Cui X T, Guo X Y, Wang Y D, et al.Application of remote sensing to water environmental processes under a changing climate[J].Journal of Hydrology, 2019,574:892-902.
|
[25] |
王伟,白军红,张玲,等.基于Cite Space的生物质炭对土壤氮循环影响的文献计量分析[J].北京师范大学学报(自然科学版), 2021, 57(1):76-85.Wang W, Bai J H, Zhang L, et al.Biochar modulation of the soil nitrogen cycle:a Cite Space-based bibliometric study[J].Journal of Beijing Normal University (Natural Science), 2021,57(1):76-85.
|
[26] |
Ouyang W, Wang Y D, Lin C Y, et al.Heavy metal loss from agricultural watershed to aquatic system:A scientometrics review[J].Science of the Total Environment, 2018,637-638,208-220.
|
[27] |
张宁,张盛,杨海超,等.粤港澳大湾区土壤污染问题计量及可视化分析[J].环境科学, 2019,40(12):5581-5592.Zhang N, Zhang S, Yang H C, et al.Visualized quantitative research of soil pollution in the Guangdong-Hong Kong-Macao greater bay area[J].Environmental Science, 2019,40(12):5581-5592.
|
[28] |
张晓晴,李雅,魏珊,等.基于CiteSpace土壤重金属污染防治的知识图谱研究[J].中国农学通报, 2022,38(4):133-143.Zhang X Q, Li Y, Wei S, et al.Knowledge map of soil heavy metal pollution control based on CiteSpace[J].Chinese Agricultural Science Bulletin, 2022,38(4):133-143.
|
[29] |
苟俊莉,张清东,李文梦,等.基于CiteSpace可视化的土壤重金属形态分析[J].贵州农业科学, 2019,47(2):43-47.Gou J L, Zhang Q D, Li W M, et al.Analysis of heavy metal speciation in soil based on CiteSpace Visualization[J].Guizhou Agricultural Sciences, 2019,47(2):43-47.
|
[30] |
高煜,杨宁宁,梁青芳,等.基于CiteSpace的重金属时空污染热点及前沿可视化研究[J].湖北农业科学, 2019,58(6):160-164.Gao Y, Yang N N, Liang Q F, et al.Research on time and space pollution hotspots and frontier visualization of heavy metals based on CiteSpace[J].Hubei Agricultural Sciences, 2019,58(6):160-164.
|
[31] |
罗杨,吴永贵,段志斌,等.基于CiteSpace重金属生物可给性的文献计量分析[J].农业环境科学学报, 2020,39(1):17-27.Luo Y, Wu Y G, Duan Z B, et al.Bibliometric analysis of bioaccessibility of heavy metals based on CiteSpace[J].Journal of Agro Environment Science, 2020,39(1):17-27.
|
[32] |
张猛,陈康.基于Citespace的土壤重金属风险评价文献计量分析[J].农业与技术, 2021,42(13):105-108.Zhang M, Chen K.Bibliometric analysis of risk assessment of heavy metals in soil based on CiteSpace[J].Agriculture and Technology, 2021,42(13):105-108.
|
[33] |
翟全德,张瑞雪,吴攀,等.基于CiteSpace可视化的锑污染研究进展[J].江苏农业科学, 2020,48(4):23-32.Zhai Q D, Zhang R X, Wu P, et al.Research advance of antimony pollution based on CiteSpace Visualization[J].Jiangsu Agricultural Sciences, 2020,48(4):23-32.
|
[34] |
Zhang X F, Liu T X, Li F B, et al.Multiple effects of nitrate amendment on the transport, transformation and bioavailability of antimony in a paddy soil-rice plant system[J].Journal of Environmental Sciences, 2021,100:90-98.
|
[35] |
Okkenhaug G, Zhu Y G, He J W, et al.Antimony (Sb) and Arsenic (As) in Sb mining impacted paddy soil from Xikuangshan, China:differences in mechanisms controlling soil sequestration and uptake in rice[J].Envrinoment Science & Technology, 2012,46(6):3155-3162.
|
[36] |
Wu F C, Fu Z Y, Liu B J, et al.Health risk associated with dietary co-exposure to high levels of antimony and arsenic in the world's largest antimony mine area[J].Science of The Total Environment, 2011,409(18):3344-3351.
|
[37] |
冯人伟,韦朝阳,涂书新.植物对锑的吸收和代谢及其毒性的研究进展[J].植物学报, 2012,47(3):302-308.Feng R W, Wei C Y, Tu S X.Research advances in uptake, metabolism and toxicity of antimony in plants[J].Chinese Bulletin of Botany, 2012,47(3):302-308.
|
[38] |
Wu T, Cui X, Ata-Ul-Karim, et al.The impact of alternate wetting and drying and continuous flooding on antimony speciation and uptake in a soil-rice system[J].Chemosphere, 2022,297,134147.
|
[39] |
Cao W C, Cong J L, Zeng G G, et al.Impacts of typical engineering nanomaterials on the response of rhizobacteria communities and rice (Oryza sativa L.) growths in waterlogged antimony-contaminated soils[J].Journal of Hazardous Materials, 2022,430:128385.
|
[40] |
Nishad P A, Bhaskarapillai A.Antimony, a pollutant of emerging concern:A review on industrial sources and remediation technologies[J].Chemosphere, 2021,277,130252.
|
[41] |
Nadimi-Goki M, Wahsha M, Bini C, et al.Assessment of total soil and plant elements in rice-based production systems in NE Italy[J].Journal of Geochemical Exploration, 2014,147:200-214.
|
[42] |
Pérez-Sirvent C, Martínez-Sánchez M J, Martínez-López S, et al.Distribution and bioaccumulation of arsenic and antimony in Dittrichia viscosa growing in mining-affected semiarid soils in southeast Spain[J].Journal of Geochemical Exploration, 2012,123:128-135.
|
[43] |
Wilson S C, Leech C D, Butler L, et al.Effects of nutrient and lime additions in mine site rehabilitation strategies on the accumulation of antimony and arsenic by native Australian plants[J].Journal of Hazardous Materials, 2013,261:801-807.
|
[44] |
Ptak C, Mcbride M.Organically complexed iron enhances bioavailability of antimony to maize (Zea mays) seedlings in organic soils[J].Environmental Toxicology and Chemistry, 2015,34(12):2732-2738.
|
[45] |
U.S.Geological Survey.Mineral commodity summaries 2020.U.S.geological survey[Z].2020:22-23.https://doi.org/10.3133/70140094.
|
[46] |
He M C, Wang N N, Long X J, et al.Antimony speciation in the environment:Recent advances in understanding the biogeochemical processes and ecological effects[J].Journal of Environmental Sciences, 2019,75:14-39.
|
[47] |
李晋毅,张蕾华.基于CiteSpace水库水源地重金属污染可视化研究[J].湖南师范大学自然科学学报, 2022,45(3):88-97.Li J Y, Zhang L H.Visualization of heavy metal pollution in reservoir water sources based on CiteSpace[J].Journal of Natural Science of Hunan Normal University, 2022,45(3):88-97.
|
[48] |
包平,周露.基于CiteSpace的学科服务可视化研究[J].农业图书情报学刊, 2014,26(7):40-43.Bao P, Zhou L.Visualized analysis of subject service based on Citespace[J].Journal of Library and Information Sciences in Agriculture, 2014,26(7):40-43.
|
[49] |
Wilson S C., Lockwood P V, Ashley P M, et al.The chemistry and behaviour of antimony in the soil environment with comparisons to arsenic:A critical review[J].Environmental Pollution, 2010,158:1169-1181.
|
[50] |
Evangelou M W H, Hockmann K, Pokharel R, et al.Accumulation of Sb, Pb, Cu, Zn and Cd by various plants species on two different relocated military shooting range soils[J].Journal of Environmental Management, 2012,108:102-107.
|
[51] |
王峰,黄清辉,肖宜华.不同来源溶解有机质与镉和锑的相互作用[J].中国环境科学, 2012,32(5):829-836.Wang F, Huang Q H, Xiao Y H.Interaction of cadmium and stibium with dissolved organic matter from different sources[J].China Environmental Science, 2012,32(5):829-836.
|
[52] |
Ungureanu G, Santos S, Boaventura R, et al.Arsenic and antimony in water and wastewater:Overview of removal techniques with special reference to latest advances in adsorption[J].Journal of Environmental Management, 2015,151:326-342.
|
[53] |
张菊梅,刘灵飞,龙健,等.土壤锑污染及其修复技术研究进展[J].环境科学与技术, 2019,42(4):61-70.Zhang J M, Liu L F, Long J, et al.Research Progress on Soil Antimony Pollution and Its Remediation Technology[J].Environmental Science & Technology, 2019,42(4):61-70.
|
[54] |
姜昱聪,夏天翔,贾晓洋,等.铁铝吸附剂对起爆药污染土壤中锑的稳定化研究[J].中国环境科学, 2020,40(8):3520-3529.Jiang Y C, Xia T X, Jia X Y, et al.Study on stabilization of antimony (Sb) in contaminated soil by primary explosives using iron-based and aluminum-based adsorbents[J].China Environmental Science, 2020, 40(8):3520-3529.
|
[55] |
Wang A H, He M C, Ouyang W, et al.Effects of antimony (III/V) on microbial activities and bacterial community structure in soil[J].Science of the Total Environment, 2021,789:148073.
|
[56] |
Li J X, Wang Q, Oremland R S, et al.Microbial antimony biogeochemistry:Enzymes, regulation, and related metabolic pathways[J].Applied and Environmental Microbiology, 2016,82:5482-5495.
|
[57] |
Li J, Huang B C, Long J.Effects of different antimony contamination levels on paddy soil bacterial diversity and community structure[J].Ecotoxicology and Environmental Safety, 2021,220:112339.
|
[58] |
Li B Q, Xu R, Sun X X, et al.Microbiome-environment interactions in antimony-contaminated rice paddies and the correlation of core microbiome with arsenic and antimony contamination[J].Chemosphere, 2021,263:128227.
|
[59] |
Natasha, Shahid M, Khalid S, et al.Biogeochemistry of antimony in soil-plant system:Ecotoxicology and human health[J].Applied Geochemistry, 2019,106:45-49.
|
[60] |
陈洁薇,胥思勤,文吉昌,等.砷·锑影响下的农作物健康风险评价[J].安徽农业科学, 2014,42(15):4730-4732,4739.Chen J W, Xu S Q, Wen J C, et al.Crop health risk assessment under the influence of As, Sb[J].Journal of Anhui Agricultural Science, 2014,42(15):4730-4732,4739.
|
[61] |
贾艳丽,郝春明,刘敏,等.锑矿区土壤和蔬菜重金属污染及健康风险评价[J].科学技术与工程, 2022,22(7):2943-2949.Jia Y L, Hao C M, Liu M, et al.Soil-vegetable pollution of heavy metals and health risk assessment in antimony mining area[J].Science Technology and Engineering, 2022,22(7):2943-2949.
|
[62] |
He M C, Yang J R.Effects of different forms of antimony on rice during the period of germination and growth and antimony concentration in rice tissue[J].Science of the Total Environment, 1999,243-244:149-155.
|
[63] |
He M C, Wang X Q, Wu F C, et al.Antimony pollution in China[J].Science of the Total Environment, 2012,421-422:41-50.
|
[64] |
何孟常,谢南岳,余维德,等.土壤锑对水稻生长的影响及残留积累规律研究[J].农业环境保护, 1994,13(1):18-22.He M C, Xie N Y, Yu W D, et al.Effects of soil antimony on rice growth and residue accumulation[J].Agro-Environmental Protection, 1994,13(1):18-22.
|
[65] |
孙福红,潘凤云,陈艳卿,等.不同来源腐殖酸对三价锑的光氧化作用及影响因素[J].中国环境科学, 2016,36(12):3729-3736.Sun F H, Pan F Y, Chen Y Q, et al.Photoxidation of antimony(III) and influencing factors in the presence of humic acids with different origins[J].China Environmental Science, 2016,36(12):3729-3736.
|
[66] |
Zhu Y M, Yang J G, Wang L Z, et al.Factors influencing the uptake and speciation transformation of antimony in the soil-plant system, and the redistribution and toxicity of antimony in plants[J].Science of the Total Environment, 2020,738:140232.
|
[67] |
苏俐雅,郭泽玮,刘连华,等.长江流域稻田-沟-塘系统中砷锑动态变化特征[J].生态环境学报, 2020,29(12):2449-2456.Su L Y, Guo Z W, Liu L H, et al.Dynamic characteristics of arsenic and antimony in paddy field-ditch-pond system of the Yangtze river basin[J].Ecology and Environmental Sciences, 2020,29(12):2449-2456.
|
[68] |
Sun W M, Sun X X, Li B Q, et al.Bacterial response to antimony and arsenic contamination in rice paddies during different flooding conditions[J].Science of the Total Environment, 2019,675:273-285.
|
[69] |
Tao Y R, Su H L, Li H X, et al.Ecological and human health risk assessment of antimony (Sb) in surface and drinking water in China[J].Journal of Cleaner Production, 2021,318:128514.
|
[70] |
Bolan N, Kumar M, Singh E, et al.Antimony contamination and its risk management in complex environmental settings:A review[J].Environment International, 2022,158:106908.
|
[71] |
吴丰昌,郑建,潘响亮,等.锑的环境生物地球化学循环与效应研究展[J].地球科学进展, 2008,23(4):350-356.Wu F C, Deng J, Pan X L, et al.Prospect on biogeochemical cycle and environmental effect of antimony[J].Advances in Earth Science, 2008,23(4):350-356.
|
[72] |
李明顺,李洁,王革娇.微生物对锑的代谢机制研究进展[J].华中农业大学学报, 2013,32(5):15-19.Li M S, Li J, Wang G J.Research advances in microbial mechanism of antimony[J].Journal of Huazhong Agricultural University, 2013,32(5):15-19.
|
|
|
|