|
|
Effects of Nanjing fog process on the spectral distribution and chemical composition of atmospheric aerosols |
ZHANG Si-rui1,2,3, FAN Shu-xian1,2, WANG Yuan1,4, HU Chun-yang1,5, ZHANG Hong-wei1, ZHU Dan-dan1, GE Pan-yan1,2 |
1. Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science & Technology, Nanjing 210044, China; 2. School of Atmospheric Physics, Nanjing University of Information Science and Technology, Nanjing 210044, China; 3. Shangrao Meteorological Bureau, Shangrao 334000, China; 4. Collaborative Innovation Center for Western Ecological Safety, Lanzhou University, Lanzhou 730000, China; 5. Unit 94582 of People's Liberation Army of China, Queshan 463217, China |
|
|
Abstract In order to explore the effects of fog process on the chemical composition and size distribution of aerosol particles in Nanjing. Three-stage fog samples and particle-size aerosol samples were collected at the same time in the fog observation in winter 2017. The microphysical quantity and aerosol spectral distribution of fog, the chemical composition of three-stage fog samples and particle-size aerosol samples before, in and after fog were compared and analyzed. The results showed that: in the winter of 2017, the fog droplet liquid water content of the first fog process in Nanjing was in the shape of asymmetric "V" with the particle size distribution, and the lowest value was located at 7μm. The fog droplet liquid water content in the second fog process was a 3peak shape with the particle size distribution, and the peaks were located at 5, 15and 21.5μm. The mass concentration of small particle size aerosol decreased while that of large particle size aerosol increased in the stage of fog formation and development. The mass concentration of aerosol particles reached the lowest in the whole particle size in the stage of fog maturity, and the mass concentration of larger particle size aerosol decreased significantly. Compared with that before fog, the peak value of aerosol mass concentration after fog moved to the direction of large particle size. Before fog, the water-soluble ion components in aerosol were enriched in small particles with particle size<0.43μm, with the progress of fog process, nucleation and hygroscopic growth lead to the enrichment of water-soluble ions to larger particle size. The newly generated aerosol in the fog was released with the evaporation of fog droplets, resulted in the increase of NO3-, SO42- and NH4+ concentrations after fog. The neutralization rate of aerosol with smaller size was higher, and the new droplets in the early stage of fog formation were more acidic. With the gradual neutralization of fog process, the pH value of fog water increased.
|
Received: 15 April 2022
|
|
|
|
|
[1] |
顾震潮.云雾降水物理基础[M]. 北京:科学出版社, 1980:1-5. Gu Z C. Physics basics of cloud precipitation[M]. Beijing:Science Press, 1980:1-5.
|
[2] |
杨军,陈宝君,银燕,等.云降水物理学[M]. 北京:气象出版社, 2011:76-77. Y J, Chen B J, Yin Y, et al. Physics of clouds and precipitation[M]. Beijing:Meteorological Press, 2011:76-77.
|
[3] |
Hoag K J, Collett Jr J L, Pandis S N. The influence of drop size-dependent fog chemistry on aerosol processing by San Joaquin Valley fogs[J].Atmospheric Environment, 1999,33(29):4817-4832.
|
[4] |
张小曳.中国大气气溶胶及其气候效应的研究[J]. 地球科学进展, 2007,22(1):12-16. Zhang X H. Study on atmospheric aerosols and their climate effects in China[J]. Advances in Earth Science, 2007,22(1):12-16.
|
[5] |
时宗波,贺克斌,陈雁菊,等.雾过程对北京市大气颗粒物理化特征的影响[J]. 环境科学, 2008,29(3):551-556. Shi Z B, He K B, Chen Y J, et al. Influence of fog processes on characteristics of individual particles in the urban atmosphere of Beijing[J]. Environmental Science, 2008,29(3):551-556.
|
[6] |
Pilié R J, Mack E J, Kocmond W C, et al. The life cycle of valley fog. Part I:Micrometeorological characteristics[J]. Journal of Applied Meteorology, 1975, 14(3):347-363.
|
[7] |
Roach W T, Brown R, Caughey S J, et al. The physics of radiation fog:I-a field study[J]. Quarterly Journal Of The Royal Meteorological Society, 1976,102(432):313-33.
|
[8] |
Pilié R J, Mack E J, Rogers C W, et al. The formation of marine fog and the development of fog-stratus systems along the California coast[J]. Journal of Applied Meteorology, 1979,18(10):1275-1286.
|
[9] |
Lewis J M, Korain D, Redmond K T. Sea fog research in the United Kingdom and United States:A historical essay including outlook[J]. Bulletin of the American Meteorological Society, 2004,85(3):395408.
|
[10] |
Gultepe I, Pearson G, Milbrandt J A, et al. The fog remote sensing and modeling field project[J]. Bulletin of the American Meteorological Society, 2009,90(3):341-359.
|
[11] |
Fuzzi S, Castillo R A, Jiusto J E, et al. Chemical composition of radiation fog water at Albany, NewYork, and its relationship to fog microphysics[J]. Journal of Geophysical Research, 1984,89(D5):7159-7164.
|
[12] |
Fuzzi S, Laj P, Ricci L, et al. Overview of the Po valley fog experiment 1994(CHEMDROP)[J]. Contributions to Atmospheric Physics, 1998,71(1):3-19.
|
[13] |
Anderson J B, Baumgardner R E, Mohnen V A, et al. Cloud chemistry in the eastern United States, as sampled from three high-elevation sites along the Appalachian Mountains[J]. Atmospheric Environment, 1999,33(30):5105-5114.
|
[14] |
Wrzesinsky T, Klemm O. Summertime fog chemistry at a mountainous site in central Europe[J]. Atmospheric Environment, 2000,34(9):1487-1496.
|
[15] |
Collett J L, Sherman D E, Moore K F, et al. Aerosol particle processing and removal by fogs:observations in chemically heterogeneous central California radiation Fogs[J]. Water Air & Soil Pollution Focus, 2001,1(5/6):303-312.
|
[16] |
Collett J L, Bator A, Sherman D E, et al. The chemical composition of fogs and intercepted clouds in the United States[J]. Atmospheric Research, 2002, 64(1-4):29-40.
|
[17] |
Haeffelin M, Bergot T, Elias T, et al. Parisfog:shedding new light on fog physical processes[J]. Bulletin of the American Meteorological Society, 2010,91(6):767-783.
|
[18] |
Stolaki S, Haeffelin M, Lac C, et al. Influence of aerosols on the life cycle of a radiation fog event. A numerical and observational study[J]. Atmospheric Research, 2015,151:146-161.
|
[19] |
李子华,彭中贵.重庆市冬季雾的物理化学特性[J]. 气象学报, 1994, 52(4):477-483. Li Z H, Peng Z G. Physical and chemical characteristics of the Chongqing winter water fog[J]. Acta Meteorological Sinica, 1994, 52(4):477-483.
|
[20] |
李子华,董韶宁,彭中贵.重庆雾水化学组分的时空变化特征[J]. 南京气象学院学报, 1996,19(1):63-68. Li Z H, Dong S N, Peng Z G. Spatial/temporal variabilities of chemical constituents fog water sampled in Chongqing[J]. Journal of Nanjing Institute of Meteorology, 1996,19(1):63-68.
|
[21] |
李一,张国正,濮梅娟,等.2006年南京冬季浓雾雾水的化学组分[J]. 中国环境科学, 2008,28(5):395-400. Li Y, Zhang G Z, Pu M J, et al. The chemical composition of fog water in the winter of 2006 of Nanjing[J]. China Environmental Science, 2008,28(5):395-400.
|
[22] |
刘红杰,王玮,高金和,等.闽南地区酸性雾水特征初探[J]. 环境科学研究, 1996,9(5):30-32. Liu H J, Wang W, Gao J H, et al. Preliminary study on the characteristics of acid fog in Minnan area[J]. Research of Environment Sciences, 1996,9(5):30-32.
|
[23] |
吴兑.南岭大瑶山浓雾雾水的化学成分研究[J]. 气象学报, 2004, 62(4):476-485. Wu D. The study on fog-water chemical composition in Dayaoshan of Nanling Mountain[J]. Acta Meteorological Sinica, 2004,62(4):476-485.
|
[24] |
顾凯华,樊曙先,黄红丽,等.南京冬季雾天颗粒物中PAHs分布与气象条件的关系[J]. 中国环境科学, 2011,31(8):1233-1240. Gu K H, Fan S X, Huang H L, et al. Characteristics of polycyclic aromatic hydrocarbons (PAHs) in particles and the influence of foggy weather conditions during the winter in Nanjing[J]. China Environmental Science, 2011,31(8):1233-1240.
|
[25] |
徐峰,牛生杰,张羽,等.湛江东海岛春季海雾雾水化学特性分析[J]. 中国环境科学, 2011,31(3):353-360. Xu F, Niu S J, Zhang Y, et al. Analyses on chemical characteristic of spring sea fog water on Donghai island in Zhanjiang, China[J]. China Environmental Science, 2011,31(3):353-360.
|
[26] |
文彬,银燕,秦彦硕,等.2009年夏季黄山云雾水化学特征及来源分析[J]. 中国环境科学, 2012,32(12):2113-2122. Wen B, Yin Y, Qin Y S, et al. Analyses of chemical characteristic in fog/cloud water and source at Mount Huangshan in summer 2009[J]. China Environmental Science, 2012,32(12):2113-2122.
|
[27] |
Twomey S. Pollution and the planetary albedo[J]. Atmospheric Environment, 1974,8:1251-1256.
|
[28] |
Twomey S. The influence of pollution on the shortwave albedo of clouds[J]. Journal of The Atmospheric Sciences, 1977,34:1149-1152.
|
[29] |
Izhar S, Gupta T, Panday A K. Scavenging efficiency of water soluble inorganic and organic aerosols by fog droplets in the Indo Gangetic Plain[J]. Atmospheric Research, 2019:1-41.
|
[30] |
Wang Y, Guo J, Wang T, et al. Influence of regional pollution and sandstorms on the chemical composition of cloud/fog at the summit of Mt. Tai shan in northern China[J]. Atmospheric Research, 2011,99:434-442.
|
[31] |
孙玉,樊曙先,张健,等.南京2013年冬季三级分粒径雾水化学特征[J]. 中国环境科学, 2015,35(4):1019-1031. Sun Y, Fan S X, Zhang J, et al. Chemical characteristics of the three-stage fog water in the winter of 2013 in Nanjing[J]. China Environmental Science, 2015,35(4):1019-1031.
|
[32] |
朱丹丹,樊曙先,胡春阳,等.南京三级分档雾水有机酸和无机组分化学特征[J]. 中国环境科学, 2020,40(8):3342-3351. Zhu D D, Fan S X, Hu C Y, et al. Chemical characteristics of organic acids and inorganic components in Nanjing three-stage fog water[J]. China Environmental Science, 2020,40(8):3342-3351.
|
[33] |
康博识,樊曙先,张悦,等.南京冬季持续性强浓雾天气中三级分档雾水的理化特性分析[J]. 气象学报, 2017,75(2):356-370. Kang B S, Fan S X, Zhang Y, et al. Physical and chemical characteristics of three-stage fog water in deep dense fog during the winter in Nanjing[J]. Acta Meteorologica Sinica, 2017,75(2):356-370.
|
[34] |
Zhang S R, Fan S X, Wang Y, et al. Chemical characteristics of size-resolved fog water at an urban site in Nanjing and the summit of Mt. Lu, East China[J]. Atmospheric Environment, 2021,263:1-14.
|
[35] |
银燕,童尧青,魏玉香,等.南京市大气细颗粒物化学成分分析[J]. 大气科学学报, 2009,32(6):723-733. Yin Y, Tong Y Q, Wei Y X, et al. Analysis of chemical composition of atmospheric fine particles in Nanjing[J]. Transactions of Atmospheric Sciences, 2009,32(6):723-733.
|
[36] |
王红磊,朱彬,马梁臣,等.南京市夏季城市不同功能区气溶胶污染特征[J]. 南京信息工程大学学报(自然科学版), 2010,2(3):221-225. Wang H L, Zhu B, Ma L C, et al. Characteristics of aerosol pollution in different functional areas of Nanjing in summer[J]. Journal of Nanjing University of Information Science & Technology, 2010,2(3):221-225.
|
[37] |
张秋晨,朱彬,苏举峰,等.南京3类不同大气污染过程下气溶胶水溶性无机离子的特征研究[J]. 环境科学, 2012,33:1945-1951. Zhang Q C, Zhu B, Su J F, et al. Study on the characteristics of aerosol water-soluble inorganic ions under three different air pollution processes in Nanjing[J]. Environmental Science, 2012,33:1945-1951.
|
[38] |
Wang H L,Zhu B, Shen L J, et al. Size distributions of aerosol and water-soluble ions in Nanjing during a crop residual burning event[J]. Journal of Environmental Sciences, 2012,24:1457-1465.
|
[39] |
李晓娜,黄健,申双和,等.一次高压型海雾中的液态含水量演变特征[J]. 热带气象学报, 2010,26(2):79-85. Li X N, Huang J, Shen S H, et al. Evolution characteristics of liquid water content in a high pressure sea fog[J]. Journal of Tropical Meteorology, 2010,26(2):79-85.
|
[40] |
苏捷,赵普生,陈一娜.北京地区不同天气条件下气溶胶数浓度粒径分布特征研究[J]. 环境科学, 2016,37(4):1208-1218. Su J, Zhao Pu S, Chen Y N. Study on aerosol number concentration and particle size distribution under different weather conditions in Beijing[J]. Environmental Science, 2016,37(4):1208-1218.
|
[41] |
Collett Jr J L, Hoag K J, Sherman D E, et al. Spatial and temporal variations in San Joaquin Valley fog chemistry[J]. Atmospheric Environment, 1999,33:129-140.
|
[42] |
Collett Jr J L, Iovinelli R, Demoz B. A three-stage cloud impactor for size-resolved measurement of cloud drop chemistry[J]. Atmospheric Environment, 1995,29:1145-1154.
|
[43] |
中国气象局.地面气象观测规范[M]. 北京:气象出版社, 2003:32-34. China Meterological Administration. Code for surface meteorological observation[M] Beijing:Meteorological Press, 2003:32-34.
|
[44] |
王元,牛生杰,陆春松,等.西双版纳热带雨林地区冬季辐射雾理化特征的观测研究[J]. 中国科学:地球科学, 2021,51:1-14. Wang Y, Niu S J, Lu C S, et al. Observational study of the physical and chemical characteristics of the winter radiation fog in the tropical rainforest in Xishuangbanna, China[J]. Science China Earth Sciences, 2021,51:1-14.
|
[45] |
Niu S J, Liu D Y, Zhao L J, et al. Summary of a 4-year fog field study in northern Nanjing, part 2:Fog microphysics[J]. Pure and Applied Geophysics, 2012,169:1137-1155.
|
[46] |
郭丽君,郭学良,方春刚,等.华北一次持续性重度雾霾天气的产生、演变与转化特征观测分析[J]. 中国科学:地球科学, 2015,45:427-443. Guo L J, Guo X L, Fang C G, et al. Observation analysis on characteristics of formation, evolution and transition of a long-lasting severe fog and haze episode in North China[J]. Science China:Earth Sciences, 2015,58:329-344.
|
[47] |
Hussein T, Hämeri K, Aalto P, et al. Particle size characterization and the indoor-to-outdoor relationship of atmospheric aerosols in Helsinki[J]. Scandinavian Journal of Work Environment & Health, 2004, 30(suppl 2):54-62.
|
[48] |
樊曙先,黄红丽,顾凯华,等.雾过程对大气气溶胶PM10中多环芳烃粒径分布的影响[J]. 高等学校化学学报, 2010,31(12):2375-2382. Fan S X, Huang H L, Gu K H, et al. Effect of fog process on particle size distribution of polycyclic aromatic hydrocarbons in atmospheric aerosol PM10[J]. Chemical Journal of Chinese Universities, 2010, 31(12):2375-2382.
|
[49] |
王庆,樊明月,李季,等.济南冬季雾的微物理结构及其对能见度的影响[J]. 大气科学, 2021,45(2):333−354. Wang Q, Fan M Y, Li J, et al. The microphysical characteristics of winter fog in Jinan and its effect on visibility[J]. Chinese Journal of Atmospheric Sciences, 2021,45(2):333−354.
|
[50] |
唐孝炎,张远航,邵敏.大气环境化学[M]. 北京:高等教育出版社, 2006:268-327. Tang X Y, Zhang Y H, Shao M. Atmospheric environmental chemistry[M]. Beijing:Higher Education Press, 2006:268-327.
|
[51] |
Petters M D, Kreidenweis S M. A single parameter representation of hygroscopic growth and cloud condensation nuclei activity[J]. Atmospheric Chemistry And Physics, 2007:1961-1971.
|
[52] |
Moore K F, Sherman D E, Reilly J E, et al. Drop size-dependent chemical composition in clouds and fogs[J]. Part Ⅰ Observations. Atmospheric Environment, 2004,38:1389-1402.
|
[53] |
Zhang F, Li Z, Li Y, et al. Impacts of organic aerosols and its oxidation level on CCN activity from measurement at a suburban site in China[J]. Atmospheric Chemistry And Physics, 2016,16:5413-5425.
|
[54] |
Kuang Y, He Y, Xu W Y, et al. Distinct diurnal variation in organic aerosol hygroscopicity and its relationship with oxygenated organic aerosol[J]. Atmospheric Chemistry And Physics, 2020,20:865-880.
|
[55] |
Gilardoni S, Massoli P, Giulianelli L, et al. Fog scavenging of organic and inorganic aerosol in the Po Valley[J]. Atmospheric Chemistry And Physics, 2014, 14:6967-6981.
|
[56] |
Lu C S, Niu S J, Tang L L, et al. Chemical composition of fog water in Nanjing area of China and its related fog microphysics[J]. Atmospheric Research, 2010,97:47-69.
|
[57] |
Chakraborty A, Bhattu D, Gupta T, et al. Real-time measurements of ambient aerosols in a polluted Indian city:Sources, characteristics, and processing of organic aerosols during foggy and nonfoggy periods[J]. Journal of Geophysical Research-Atmospheres, 2015,120:9006-9019.
|
[58] |
Zhang Q, Jimenez J L, Worsnop D R, et al. A case study of urban particle acidity and its influence on secondary organic aerosol[J]. Environmental Science & Technology, 2007,41:3213-3219.
|
[59] |
Sasakawa M, Uematsu M. Chemical composition of aerosol, sea fog, and rainwater in the marine boundary layer of the northwestern North Pacific and its marginal seas[J]. Journal of Geophysical Research-Atmospheres, 2002,107:1-179.
|
|
|
|