|
|
Spatial downscaling of chlorophyll A in Himawari-8 based on Landsat 8 images |
XIONG Yuan-kang, FAN Dong-lin, HE Hong-chang, SHI Jin-ke, ZHANG Jie, XIAO Bin, FU Bo-lin |
College of Surveying and Geo-Informatics, Guilin University of Technology, Guilin 541000, China |
|
|
Abstract The chlorophyll-a products of the new geostationary meteorological satellite Himawari-8 are difficult to meet the requirements of water quality monitoring in near-shore waters with high spatial heterogeneity due to their low spatial resolution. To overcome this limitation, a non-linear random forest algorithm was used to improve the spatial resolution of the chlorophyll a data from Himawari-8 by constructing a downscaling model using the band reflectance data from Landsat 8and the chlorophyll-a products from Himawari-8. The results showed that the coefficients of determination (R2) of the two autumn models and two winter models reached 0.6, 0.72, 0.71 and 0.85, respectively, and the root mean square errors (RMSE) were 1.47, 1.05, 1.89, 0.76mg/m3, respectively. The comparative analysis of the measured site data showed that the chlorophyll-a data generated by the downscaled model had a high consistency with the chlorophyll-a data of Himawari-8, and the R2 reached 0.81 The spatial variation of chlorophyll-a concentration in the near-shore sea area is well reflected by the spatial variation of chlorophyll a data.
|
Received: 08 April 2022
|
|
|
|
|
[1] |
Bierman P, Lewis M, Ostendor B, et al. A review of methods for analysing spatial and temporal patterns in coastal water quality[J]. Ecological Indicators, 2011,11(1):103-114.
|
[2] |
Goetz S J, Gardiner N, Viers J H. Monitoring freshwater, estuarine and near-shore benthic ecosystems with multi-sensor remote sensing:An introduction to the special issue[J]. Remote Sensing of Environment, 2008,112(11):3993-3995.
|
[3] |
于博文.基于深度学习的VIIRS卫星全球海洋叶绿素a浓度反演[D]. 北京:中国地质大学, 2019. Yu B W. Global ocean chlorophyll-a concentration inversion based on deep learning viirs satellite[D]. Beijing:China University of Geosciences, 2019.
|
[4] |
Tang D L, Ni I H, Kester D R, et al. Remote sensing observations of winter phytoplankton blooms southwest of the Luzon Strait in the South China Sea[J]. Marine Ecology Progress, 1999,191:43-51.
|
[5] |
Kim H H, Ko B C, Nam J Y. Predicting chlorophyll-a using Landsat 8OLI sensor data and the non-linear RANSAC method-a case study of Nakdong River, South Korea[J]. International Journal of Remote Sensing, 2016,37(14):3255-3271.
|
[6] |
Frouin R J, Shenoi S C, Rao K H, et al. Ocean color estimation by Himawari-8/AHI[C]//Spie Asia-pacific Remote Sensing. Remote Sensing of the Oceans and Inland Waters:Techniques, Applications, and Challenges, 2016:987810.
|
[7] |
Nazeer M, Nichol J E. Development and application of a remote sensing-based Chlorophyll-a concentration prediction model for complex coastal waters of Hong Kong[J]. Journal of Hydrology, 2016, 532:80-89.
|
[8] |
Atkinson, Peter M. Downscaling in remote sensing[J]. International Journal of Applied Earth Observation & Geoinformation, 2013,22(Complete):106-114.
|
[9] |
Fu Y, Xu S, Zhang C, et al. Spatial downscaling of MODIS Chlorophyll-a using Landsat 8images for complex coastal water monitoring[J]. Estuarine Coastal & Shelf Science, 2018,209:149-159.
|
[10] |
Guo S, Sun B, Zhang H K, et al. MODIS ocean color product downscaling via spatio-temporal fusion and regression:The case of chlorophyll-a in coastal waters[J]. International journal of applied earth observation and geoinformation, 2018,73:340-361.
|
[11] |
Mohebzadeh H, Yeom J, Lee T. Spatial downscaling of MODIS Chlorophyll-a with Genetic Programming in South Korea[J]. Remote Sensing, 2020,12(9):1412.DOI:10.3390/rs12091412.
|
[12] |
杨明悦,毛献忠.基于特征重要性评分-随机森林的溶解氧预测模型及其在深圳湾的应用[J]. 中国环境科学, 2022,42(8):3876-3881. Yang M Y, Mao X Z. Dissolved oxygen prediction model based on characteristic importance score-random forest and its application in Shenzhen Bay[J]. China Environmental Science, 2022,42(8):3876-3881.
|
[13] |
Ghosh A, Joshi P K. Hyperspectral imagery for disaggregation of land surface temperature with selected regression algorithms over different land use land cover scenes[J]. ISPRS journal of photogrammetry and remote sensing, 2014, 96:76-93.
|
[14] |
Hutengs C, Vohland M. Downscaling land surface temperatures at regional scales with random forest regression[J]. Remote Sensing of Environment, 2016,178:127-141.
|
[15] |
徐轶肖,陶晓娉,刘成辉,等.广西北海半岛夏季营养盐及水质状况分析[J]. 海洋科学, 2021,45(6):107-117. Xu Y X, Tao X L, Liu C H, et al. Analysis of summer nutrient salts and water quality in Guangxi Beihai Peninsula[J]. Marine Science, 2021, 45(6):107-117.
|
[16] |
刘子琳,宁修仁,蔡昱明.北部湾浮游植物粒径分级叶绿素a和初级生产力的分布特征[J]. 海洋学报, 1998,20(1):50-57. Liu Z L, Ning X R, Cai Y M. Distribution characteristics of phytoplankton grain size graded chlorophyll a and primary productivity in Beibu Gulf[J]. Acta Oceanic Sinica, 1998,20(1):50-57.
|
[17] |
刘大召,晁俏利.北部湾海域叶绿素a质量浓度时空分布研究[J]. 海洋学研究, 2019,37(2):95-102. Liu D Z, Chao Q L. Spatial and temporal distribution of chlorophyll-a mass concentration in Beibu Gulf[J]. Ocean Research, 2019,37(2):95-102.
|
[18] |
杨斌,钟秋平,张晨晓,等.钦州湾叶绿素a和初级生产力时空变化及其影响因素[J]. 环境科学学报, 2015,35(5):1333-1340. Yang B, Zhong Q P, Zhang C X, et al. Temporal and spatial variation of chlorophyll a and primary productivity in Qinzhou Bay and its influencing factors[J]. Journal of Environmental Science, 2015,35(5):1333-1340.
|
[19] |
HK EPD. Marine water quality in Hong Kong in 2012[Z]. 2013
|
[20] |
游介文,邹滨,赵秀阁,等.基于随机森林模型的中国近地面NO2浓度估算[J]. 中国环境科学, 2019,39(3):969-979. You J W, Zou B, Zhao X G, et al. Estimation of near-surface NO2 concentrations in China based on random forest model[J]. China Environmental Science, 2019,39(3):969-979.
|
[21] |
Belgiu, Dragut. Random forest in remote sensing:A review of applications and future directions[J]. Isprs. J. Photogramm, 2016,2016, 114(-):24-31.
|
[22] |
Hutengs C, Vohland M. Downscaling land surface temperatures at regional scales with random forest regression[J]. Remote Sensing of Environment, 2016,178:127-141.
|
[23] |
李光一,李海萍,万华伟,等.随机森林算法在新疆物种丰富度影响因素研究中的应用[J]. 中国环境科学, 2021,41(2):941-950. Li G Y, Li H P, Wan H W, et al. Application of Stochastic Forest Algorithm in The Study of Influencing Factors of Species Richness in Xinjiang[J]. China Environmental Science,2021, 41(2):941-950.
|
[24] |
Maung S H T Ohara S, Matsuoka K, et al. Seasonal dynamics influencing coastal primary production and phytoplankton communities along the southern Myanmar coast[J]. Journal of Oceanography, 2017,73:345-364.
|
[25] |
潘俊.春夏季南黄海水文环境季节变化及其生态效应[D]. 青岛:中国科学院大学(中国科学院海洋研究所), 2020. Pan J. Seasonal changes and ecological effects of the South Yellow Sea in spring and summer[D]. Qingdao:University of Chinese Academy of Sciences (Institute of Oceanology, Chinese Academy of Sciences), 2020.
|
[26] |
孙宏亮,何宏昌,付波霖,等.香港近海海域叶绿素a定量反演及时空变化分析[J]. 中国环境科学, 2020,40(5):2222-2229. Sun H L, He H C, Fu B L, et al. Analysis of chlorophyll a quantitative inversion and space-to-space change in hong Kong coastal waters[J]. Chinese Journal of Environmental Science, 2020,40(5):2222-2229.
|
[27] |
Lee L, Srivastava P K, Petropoulos G P. Overview of sensitivity analysis methods in earth observation modeling-Science direct[J]. Sensitivity Analysis in Earth Observation Modelling, 2017:3-24.
|
|
|
|