|
|
Estimation on net carbon emission from organic carbon transport caused by Three Gorges Dam |
XING Ran1, QIN Bo-qiang2, BAO Yu-fei3, DAI Jiang-yu4, ZENG Chen-jun5, ZHU Lin1, SHI Wen-qing1 |
1. College of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China; 2. State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; 3. China Institute of Water Resources and Hydropower Research, State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, Beijing 100038, China; 4. State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing 210029, China; 5. Guangdong Research Institute of Water Resources and Hydropower, Guangzhou 510635, China |
|
|
Abstract In order to quantify net carbon emissions from the Three Gorges Reservoir, China, this study clarified carbon biogeochemical cycles, and estimated carbon emissions during organic carbon (OC) transport along Yangtze River in the scenarios with and without Three Gorges Dam. Results demonstrated that Three Gorges Dam doesn’t increase but decreases carbon emissions by (23.24 ±1.05)%. Three Gorges Dam redistributes OC and transfers the hot spots of OC decomposition and carbon emissions from Yangtze River estuary to Three Gorges Reservoir. In the reservoir, the effective OC burial decreases net carbon emissions, although anoxic conditions enhance methane production.
|
Received: 24 August 2022
|
|
|
|
|
[1] |
Masson-Delmotte V, Zhai P, Pörtner H-O, et al. Global Warming of 1.5℃. An IPCC Special Report on the impacts of global warming of 1.5℃ above preindustrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change[R/OL].[2021-08-08]. http://www.ipcc.ch/site/assets/uploads/sites/2/2019/06/SR15_Full_Report_Hi-gh_Res.pdf.
|
[2] |
李淑华,王继业.中国水电发展概况[J]. 水电站机电技术, 2009, 32(3):105-107. Li S H, Wang J Y. General situation of hydropower development in China[J]. Mechanical & Electrical Technique of Hydropower Station, 2009,32(3):105-107.
|
[3] |
王舒鹤.中国水电发展的现状与前景展望[J]. 河南水利与南水北调, 2021,50(7):26-27. Wang S H. Present situation and prospect of hydropower development in China[J]. Henan Water Resources and South-to-North Water Diversion, 2021,50(7):26-27.
|
[4] |
Barros N, Cole J J, Tranvik L J, et al. Carbon emission from hydroelectric reservoirs linked to reservoir age and latitude[J]. Nature Geoscience, 2011,4(9):593-596.
|
[5] |
Jim G. Methane quashes green credentials of hydropower[J]. Nature, 2006,444(7119):524-525.
|
[6] |
Kelly C A, Hecky R E. Are Hydroelectric Reservoirs Significant Sources of Greenhouse Gases?[J]. Ambio, 1993,22(4):245-248.
|
[7] |
St. Louis V L, Kelly C A, Duchemin É, et al. Reservoir surfaces as sources of greenhouse gases to the atmosphere:A Global estimate:Reservoirs are sources of greenhouse gases to the atmosphere, and their surface areas have increased to the point where they should be included in global inventories of anthropogenic emissions of greenhouse gases[J]. BioScience, 2000,50(9):766-775.
|
[8] |
Deemer B R, Harrison J A, Li S Y, et al. Greenhouse gas emissions from reservoir water surfaces:A new global synthesis[J]. Bioscience, 2016,66(11):949-964.
|
[9] |
W L. Modelling greenhouse gas emissions from the Three Gorges Dam[D]. Hong Kong:The Hong Kong Polytechnic University, 2009.
|
[10] |
Hu Y A, Cheng H F. The urgency of assessing the greenhouse gas budgets of hydroelectric reservoirs in China[J]. Nature Climate Change, 2013,3(8):708-712.
|
[11] |
杨 乐,逯 非,王效科,等.三峡水库上空甲烷浓度时空变化及与水库甲烷通量的关系[J]. 长江流域资源与环境, 2012,21:209-214. Yang L, Lu F, Wang X K, et al. Spatial and temporal variation of methane concentrations in the atmosphere of the Three Gorges Reservoir and ITS relationship with methane emissions from the reservoir[J]. Resources and Environment in the Yangtze Basin, 2012, 21:209-214.
|
[12] |
Wang X, Tian Y, Liu H, et al. The influence of incorporating microbial fuel cells on greenhouse gas emissions from constructed wetlands[J]. Science of the Total Environment, 2019,656:270-279.
|
[13] |
Forster P, Storelvmo T, Armour K, et al. The earth's energy budget, climate feedbacks, and climate sensitivity[M]. UK:Cambridge University Press, 2021.
|
[14] |
Catalan N, Marce R, Kothawala D N, et al. Organic carbon decomposition rates controlled by water retention time across inland waters[J]. Nature Geoscience, 2016,9(7):501-504.
|
[15] |
Vörösmarty C J, Meybeck M, Fekete B, et al. Anthropogenic sediment retention:major global impact from registered river impoundments[J]. Global and Planetary Change, 2003,39(1):169-190.
|
[16] |
长江三峡工程运行实录[M]. 北京:中国三峡出版社, 2018. Log of Three Gorges Project Operation[M]. Beijing:China Three Gorges Press, 2018.
|
[17] |
Li Z, Sun Z, Chen Y, et al. The net GHG emissions of the Three Gorges Reservoir in China:II. Post-impoundment GHG inventories and full-scale synthesis[J]. Journal of Cleaner Production, 2020,277 (123961):1-12.
|
[18] |
Ni J, Wang H, Ma T, et al. Three Gorges Dam:friend or foe of riverine greenhouse gases?[J]. National Science Review, 2022,9(6):1-9.
|
[19] |
Li Z, Lu L, Lv P, et al. Imbalanced Stoichiometric Reservoir Sedimentation Regulates Methane Accumulation in China's Three Gorges Reservoir[J]. Water Resources Research, 2020,56(9).
|
[20] |
李 哲,王殿常.从水库温室气体研究到水电碳足迹评价:方法及进展[J]. 水利学报, 2022,53(2):139-153. Li Z, Wang D C. From reservoir greenhouse gas emissions to hydropower carbon footprint:ethodology and advances[J]. Journal of Hydraulic Engineering, 2022,53(2):139-153.
|
[21] |
宁 萍,张喆燕.三峡库区江面漂浮垃圾的形成与特征研究[J]. 重庆三峡学院学报, 2010,26(3):1-4. Ning P, Zhang Z Y. On formation and features of floating garbage on water surface in Three Gorges Area[J]. Journal of Chongqing Three Gorges University, 2010,26(3):1-4.
|
[22] |
陈 钢.近期长江下游河床阻力变化特征[D]. 上海:华东师范大学, 2018. Chen G. Recent change characteristics of river bed resistance in the lower reaches of the Yangtze River[D]. Shanghai:East China Normal University, 2018.
|
[23] |
Mendonca R, Kosten S, Sobek S, et al. Organic carbon burial efficiency in a subtropical hydroelectric reservoir[J]. Biogeosciences, 2016,13(11):3331-3342.
|
[24] |
Yu P, Zhang H, Zheng M, et al. The partial pressure of carbon dioxide and air-sea fluxes in the Changjiang River Estuary and adjacent Hangzhou Bay[J]. Acta Oceanologica Sinica, 2013,32(6):13-17.
|
[25] |
Zhai W, Dai M, Guo X. Carbonate system and CO2 degassing fluxes in the inner estuary of Changjiang (Yangtze) River, China[J]. Marine Chemistry, 2007,107(3):342-356.
|
[26] |
Zhang G, Zhang J, Liu S, et al. Methane in the Changjiang (Yangtze River) Estuary and its adjacent marine area:riverine input, sediment release and atmospheric fluxes[J]. Biogeochemistry, 2008,91(1):71-84.
|
[27] |
Wu Y, Eglinton T, Yang L, et al. Spatial variability in the abundance, composition, and age of organic matter in surficial sediments of the East China Sea[J]. Journal of Geophysical Research-Biogeosciences, 2013,118(4):1495-1507.
|
[28] |
A R P, Jens H, Ronny L, et al. Global carbon dioxide emissions from inland waters[J]. Nature, 2013,503(7476):355-359.
|
[29] |
Battin T J, Luyssaert S, Kaplan L A, et al. The boundless carbon cycle[J]. Nature Geoscience, 2009,2(9):598-600.
|
[30] |
Aitkenhead J A, Mcdowell W H. Soil C:N ratio as a predictor of annual riverine DOC flux at local and global scales[J]. Global Biogeochemical Cycles, 2000,14(1):127-138.
|
[31] |
Li M, Peng C, Wang M, et al. The carbon flux of global rivers:A re-evaluation of amount and spatial patterns[J]. Ecological Indicators, 2017,80:40-51.
|
[32] |
南 箔,杨子寒,毕 旭,等.生态系统服务价值与人类活动的时空关联分析——以长江中游华阳河湖群地区为例[J]. 中国环境科学, 2018,38(9):3531-3541. Nan B, Yang Z H, Bi X, et al. Spatial-temporal correlation analysis of ecosystem services value and human activities-a case study of Huayang lakes area in the middle reaches of Yangtze River[J]. China Environmental Science, 2018,38(9):3531-3541.
|
[33] |
Zhao B, Yao P, Li D, et al. Effects of river damming and delta erosion on organic carbon burial in the Changjiang Estuary and adjacent East China Sea inner shelf[J]. Science of the Total Environment, 2021,793:1-14.
|
[34] |
史常乐,牛兰花,赵国龙,等.三峡大坝-葛洲坝河段水沙变化及冲淤特性[J]. 水科学进展, 2020,31:875-884. Shi C L, Niu L H, Zhao G L, et al. Variation in water and sediment conditions and erosion and deposition characteristics in the reach between Three Gorges Dam and Gezhou Dam[J]. Advances in Water Science, 2020,31:875-884.
|
[35] |
Bastviken D, Tranvik L J, Downing J A, et al. Freshwater Methane Emissions Offset the Continental Carbon Sink[J]. Science, 2011, 331(6013):50-50.
|
[36] |
赖 珊,万宏滨,唐 芳,等.抚仙湖沉积物有机碳埋藏特征及来源解析[J]. 中国环境科学, 2020,40(3):1246-1256. Lai S, Wan H B, Tang F, et al. Characteristics and source analysis of organic carbon buried in sediments of Fuxian Lake[J]. China Environmental Science, 2020,40(3):1246-1256.
|
[37] |
段巍岩,黄 昌.河流湖泊碳循环研究进展进展[J]. 中国环境科学, 2021,41(8):3792-3807. Duan W Y, Huang C. Research progress on the carbon cycle of rivers and lakes[J]. China Environmental Science, 2021,41(8):3792-3807.
|
[38] |
张 晨,王浩百,胡华芬,等.人为扰动下河流复氧激增现象及机制分析[J]. 中国环境科学, 2020,40(5):2167-2173. Zhang C, Wang H B, Hu H F, et al. Reaeration surging phenomenon with artificial disturbance and theimplication for the impact of turbulent kinetic energy in river[J]. China Environmental Science, 2020,40(5):2167-2173.
|
[39] |
王 超,贾庆林,贾海燕,等.光照、流速和水温对大型人工输水渠道自净影响[J]. 中国环境科学, 2021,41(10):4792-4801. Wang C, Jia Q L, Jia H Y, et al. Influence of light, flow rate and water temperature on self-purification of large artificial water conveyance channels[J]. China Environmental Science, 2021,41(10):4792-4801.
|
[40] |
Maeck A, Delsontro T, Mcginnis D F, et al. Sediment trapping by dams creates methane emission hot spots[J]. Environmental Science & Technology, 2013,47(15):8130-8137.
|
[41] |
Blair N E, Aller R C. The fate of terrestrial organic carbon in the marine environment[J]. Annual Review of Marine Science, 2012,4:401-423.
|
[42] |
Galy V, France-Lanord C, Beyssac O, et al. Efficient organic carbon burial in the Bengal fan sustained by the Himalayan erosional system[J]. Nature, 2007,450(7168):407-410.
|
[43] |
Deng B, Zhang J, Wu Y. Recent sediment accumulation and carbon burial in the East China Sea[J]. Global Biogeochemical Cycles, 2006, 20(3):1-12.
|
[44] |
Hu B, Yang Z, Wang H, et al. Sedimentation in the Three Gorges Dam and the future trend of Changjiang (Yangtze River) sediment flux to the sea[J]. Hydrology and Earth System Sciences, 2009,13(11):2253-2264.
|
[45] |
Mendonca R, Kosten S, Sobek S, et al. Hydroelectric carbon sequestration[J]. Nature Geoscience, 2012,5(12):838-840.
|
[46] |
Prairie Y T, Alm J, Beaulieu J, et al. Greenhouse gas emissions from freshwater reservoirs:What does the atmosphere see?[J]. Ecosystems, 2018,21(5):1058-1071.
|
[47] |
Hao Q, Chen S, Ni X, et al. Methane and nitrous oxide emissions from the drawdown areas of the Three Gorges Reservoir[J]. Science of the Total Environment, 2019,660:567-576.
|
[48] |
Li Z, Zhang Z, Lin C, et al. Soil-air greenhouse gas fluxes influenced by farming practices in reservoir drawdown area:A case at the Three Gorges Reservoir in China[J]. Journal of Environmental Management, 2016,181:64-73.
|
[49] |
张 佩,王晓锋,袁兴中.中国淡水生态系统甲烷排放基本特征及研究进展[J]. 中国环境科学, 2020,40(8):3567-3579. Zhang P, Wang X F, Yuan X Z. General characteristics and research progress of methane emissions from freshwater ecosystems in China[J]. China Environmental Science, 2020,40(8):3567-3579.
|
[1] |
WANG Jia-ni, MA Ruo-nan, TANG Ruo-lan, LI Li-qiong, PENG Li-juan, LI Guo-xue, LIN Jia-cong, WANG Ding-mei, LI Qin-fen, YUAN Jing. Effect of condensed water reflux on maturity and greenhouse gas emissions during composting[J]. CHINA ENVIRONMENTAL SCIENCECE, 2023, 43(1): 234-243. |
|
|
|
|