|
|
Photothermal catalytic degradation of toluene by CuxO/Bi/Bi2WO6/BiOCl |
FANG Hong-li1, CHEN Jia-yi1, ZENG Wen-jing1, WU Su-qin2, ZHANG Miao-miao2, YUAN Shao-tang2, RUI Ze-bao1 |
1. School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China; 2. MHOME(Guangzhou) Industrial Co., LTD, Guangzhou 510308, China |
|
|
Abstract Type II and Z scheme complex heterojunction CuxO/Bi/Bi2WO6/BiOCl with tight interfaces was synthesized. Based on the surface plasmon resonance effect of the component Bi nanoparticles, unique photogenerated charge transfer and separation route, and suitable redox potential for active oxygen species production, CuxO/Bi/Bi2WO6/BiOCl exhibited wide light response range, strong light absorption, and efficient photogenerated charge separation and active oxygen species production properties. Multicomponent complex heterojunction CuxO/Bi/Bi2WO6/BiOCl demonstrated excellent photothermal synergistic catalytic toluene degradation performance. Under 90℃ coupling light (300mW/cm2, λ=200~2500nm) irradiation, 0.0005% of toluene was completely mineralized on CuxO/Bi/Bi2WO6/BiOCl in 0.5h, ranging among the best performance of the reported photothermal catalysts under similar conditions.
|
Received: 24 October 2022
|
|
|
|
|
[1] Fang S, Hu Y H. Thermo-photo catalysis:a whole greater than the sum of its parts[J]. Chemical Society Reviews. 2022,51(9):3609-3647. [2] Yang Y, Zhao S, Cui L, et al. Recent advancement and future challenges of photothermal catalysis for VOCs elimination:From catalyst design to applications[J]. Green Energy & Environment. https://doi.org/10.1016/j.gee.2022.02.006. [3] Li Y, Wu S, Wu J, et al. Photothermocatalysis for efficient abatement of CO and VOCs[J]. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2020,8(17):8171-8194. [4] 芮泽宝,杨晓庆,陈俊妃,等.光热协同催化净化挥发性有机物的研究进展及展望[J]. 化工学报, 2018,69(12):4947-4958. Rui Z B, Yang X Q, Chen J F, et al. Photo-thermal synergistic catalysis for VOCs purification:current status and future perspectives[J]. CIESC Journal, 2018,69:4947-4958. [5] Yang Y, Zhao S, Bi F, et al. Highly efficient photothermal catalysis of toluene over Co3O4/TiO2p-n heterojunction:The crucial roles of interface defects and band structure[J]. Applied Catalysis B:Environmental, 2022,315:121550. [6] Liang C, Li C, Zhu Y, et al. Light-driven photothermal catalysis for degradation of toluene on CuO/TiO2 Composite:Dominating photocatalysis and auxiliary thermalcatalysis[J]. Applied Surface Science. 2022,601:154144. [7] 班 飒,朱 浩,王 童,等.双Z型MIL-88A(Fe)/Ag3PO4/AgI光芬顿催化剂对染料的去除[J]. 中国环境科学, 2022,42(7):3164-3173. Ban S, Zhu H, Wang T, et al. Study on dye removal by dual Z-Scheme MIL-88A (Fe)/Ag3PO4/AgI photo-Fenton catalyst[J]. China Environmental Science, 2022,42:3164-3173. [8] Ji W K, Rui Z B, Ji H B. Z‑scheme Ag3PO4/Ag/SrTiO3 heterojunction for visible-light induced photothermal synergistic VOCs degradation with enhanced performance[J]. Industrial & Engineering Chemistry Research, 2019,58(31):13950-13959. [9] Xu Q, Zhang L, Cheng B, et al. S-Scheme Heterojunction Photocatalyst[J]. Chem, 2020,6(7):1543-1559. [10] Li J, Feng J, Guo X, et al. Defect-band bridge photothermally activates Type III heterojunction for CO2 reduction and typical VOCs oxidation[J]. Applied Catalysis B:Environmental, 2022,309:121248. [11] Li J, Chen J, Fang H, et al. Plasmonic metal bridge leading type III heterojunctions to robust type B photothermocatalysts[J]. Industrial & engineering Chemistry Research, 2021,60(23):8420-8429. [12] Li J, Yang X, Ma C, et al. Selectively recombining the photoinduced charges in bandgap-broken Ag3PO4/GdCrO3 with a plasmonic Ag bridge for efficient photothermocatalytic VOCs degradation and CO2 reduction[J]. Applied Catalysis B:Environmental, 2021,291:120053. [13] Li Z, Luo M, Li B, et al. 3-D hierarchical micro/nano-structures of porous Bi2WO6:Controlled hydrothermal synthesis and enhanced photocatalytic performances[J]. Microporous and Mesoporous Materials, 2020,313:110830. [14] Qian X, Yue D, Tian Z, et al. Carbon quantum dots decorated Bi2WO6 nanocomposite with enhanced photocatalytic oxidation activity for VOCs[J]. Applied Catalysis B:Environmental, 2016,193:16-21. [15] Ye L, Su Y, Jin X, et al. Recent advances in BiOX (X=Cl, Br and I) photocatalysts:synthesis, modification, facet effects and mechanisms[J]. Environmental Science:Nano. 2014,1(2):90. [16] Zhao X, Xia Y, Wang X, et al. Promoted photocarriers separation in atomically thin BiOCl/Bi2WO6 heterostructure for solar-driven photocatalytic CO2 reduction[J]. Chemical Engineering Journal, 2022, 449:137874. [17] Wang J, Wei Y, Yang B, et al. In situ grown heterojunction of Bi2WO6/BiOCl for efficient photoelectrocatalytic CO2 reduction[J]. Journal of Catalysis. 2019,377:209-217. [18] Zhang L, Yang C, Lv K, et al. SPR effect of bismuth enhanced visible photoreactivity of Bi2WO6 for NO abatement[J]. Chinese Journal of Catalysis. 2019,40(5):755-764. [19] Zhang L, Li Y, Li Q, et al. Recent advances on bismuth-based photocatalysts:Strategies and mechanisms[J]. Chemical Engineering Journal. 2021,419:129484. [20] Kong J, Rui Z, Liu S, et al. Homeostasis in CuxO/SrTiO3 hybrid allows highly active and stable visible light photocatalytic performance[J]. Chemical Communications, 2017,53(91):12329-12332. [21] Chen J, Guo X, Lang L, et al. Multifunctional Z-scheme CuxO/Ag/SrTiO3 heterojunction for photothermocatalytic VOCs degradation and antibiosis[J]. Applied Surface Science, 2023,618:153275. [22] Rui Z, Huang Y, Zheng Y, et al. Effect of titania polymorph on the properties of CuO/TiO2 catalysts for trace methane combustion[J]. Journal of Molecular Catalysis. A, Chemical, 2013,372:128-136. [23] Kong J, Rui Z, Ji H. Carbon Nitride Polymer Sensitization and Nitrogen Doping of SrTiO3/TiO2 Nanotube Heterostructure toward High Visible Light Photocatalytic Performance[J]. Industrial & Engineering Chemistry Research, 2017,56(36):9999-10008. [24] Zhang S, Pu W, Du H, et al. Facile synthesis of Pt assisted Bi-Bi2WO6−x with oxygen vacancies for the improved photocatalytic activity under visible light[J]. Applied Surface Science, 2018,459:363-375. [25] Yang P, Chen C, Wang D, et al. Kinetics, reaction pathways, and mechanism investigation for improved environmental remediation by 0D/3D CdTe/Bi2WO6Z-scheme catalyst[J]. Applied Catalysis B:Environmental, 2021,285:119877. [26] Xu X, Meng L, Dai Y, et al. Bi spheres SPR-coupled Cu2O/Bi2MoO6 with hollow spheres forming Z-scheme Cu2O/Bi/Bi2MoO6 heterostructure for simultaneous photocatalytic decontamination of sulfadiazine and Ni(II)[J]. Journal of Hazardous Materials, 2020,381:120953. [27] Fu S, Zheng Y, Zhou X, et al. Visible light promoted degradation of gaseous volatile organic compounds catalyzed by Au supported layered double hydroxides:Influencing factors, kinetics and mechanism[J]. Journal of Hazardous Materials, 2019,363:41-54. [28] Liu J, Wang T, Nie Q, et al. One-step synthesis of metallic Bi deposited Bi2WO6 nanoclusters for enhanced photocatalytic performance:An experimental and DFT study[J]. Applied Surface Science, 2021,559:149970. [29] Wang F, Gu Y, Yang Z, et al. The effect of halogen on BiOX (X = Cl, Br, I)/Bi2WO6 heterojunction for visible-light-driven photocatalytic benzyl alcohol selective oxidation[J]. Applied Catalysis A:General, 2018,567:65-72. [30] Mamba G, Pulgarin C, Kiwi J, et al. Synchronic coupling of Cu2O(p)/CuO(n) semiconductors leading to Norfloxacin degradation under visible light:Kinetics, mechanism and film surface properties[J]. Journal of Catalysis, 2017,353:133-140. [31] Meng X, Liu X, Xu W, et al. Low resistivity phase-pure n-type Cu2O films realized via post-deposition nitrogen plasma treatment[J]. Journal of Alloys & Compounds, 2018,769:484-489. [32] Luo W, Yang Z, Li Z, et al. Solar hydrogen generation from seawater with a modified BiVO4 photoanode[J]. Energy & Environmental Science, 2011,4(10):4046-4051. [33] Zhou L, Dai S, Xu S, et al. Piezoelectric effect synergistically enhances the performance of Ti32-oxo-cluster/BaTiO3/CuS p-n heterojunction photocatalytic degradation of pollutants[J]. Applied Catalysis B:Environmental, 2021,291:120019. [34] Rao Z, Lu G, Chen L, et al. Photocatalytic oxidation mechanism of Gas-Phase VOCs:Unveiling the role of holes, •OH and •O2−[J]. Chemical Engineering Journal, 2022,430:132766. [35] Jiang C, Wang H, Lin S, et al. Low-temperature photothermal catalytic oxidation of toluene on a Core/Shell SiO2@Pt@ZrO2 nanostructure[J]. Industrial & Engineering Chemistry Research, 2019,58(36):16450-16458. [36] Tang Y, Tao Y, Zhou T, et al. Direct Z-scheme La1-xCexMnO3 catalyst for photothermal degradation of toluene[J]. Environmental Science and Pollution Research International, 2019,26(36):36832-36844. [37] Ji W, Shen T, Kong J, et al. Synergistic performance between visible-light photocatalysis and thermocatalysis for VOCs oxidation over robust Ag/F-codoped SrTiO3[J]. Industrial & Engineering Chemistry Research, 2018,57(38):12766-12773. [38] Zhang H, Li L, Li Q, et al. Graphitic carbon nitride loaded with bismuth nanoparticles displays antibacterial photocatalytic activity[J]. Rare Metals. 2022,41(5):1570-1582. |
|
|
|