|
|
Dust emission and control of construction sites and bare land based on remote sensing monitoring |
LI Ting-ting1,2, XU Tao1,2, GENG Kai-yu3, ZENG Qing-wei4, GONG Fu-qian1,2, FAN Shou-bin1,2 |
1. Beijing Municipal Research Institute of Eco-Environmental Protection, Beijing 100037, China; 2. National Engineering Research Center of Urban Environmental Pollution Control, Beijing 100037, China; 3. Department of Ecology and Environment of Changping, Beijing, Beijing 102200, China; 4. Beijing Zhongyun Weitu Technology Co. LTD, Beijing 100096, China |
|
|
Abstract Taking Changping District of Beijing as a research object, based on remote sensing monitoring and emission factor method, this paper analyzed the distribution, emission characteristics and control situation of dust sources from construction sites and bare land. The results showed that the total area of construction sites with different scales was not much different, among which small-scale construction sites account for an absolute advantage, and the dustproof rate of large and medium-sized construction sites was higher than that of small-scale construction sites. Compared with construction sites, bare land had a larger total area, more quantity, smaller unit area, and relatively greater difficulty in control. The dustproof rate of bare land was the lowest. Beiqijia Town and Shahe Town account for 40% of the total area of construction sites in the whole district, indicating that urban construction was developing northward from Huitian area. The dustproof rate of Huitian area and its adjacent Shahe Town and Beiqijia Town was higher than that of Baishan Town, Cuicun Town and three mountainous towns in the north. The TSP emissions from construction sites and bare land in Changping District were 48285t and 2756t respectively in 2021. The dust emission from bare land was only 6% of that from construction sites. Compared with the theoretical value without control measures, both construction site dust and bare land dust reduced emissions by 25%, among which Huitian area had better control effect on both construction site dust and bare land dust than other areas. This study combined localized emission model with remote sensing interpretation to estimate dust emission amount, which can solve the problem of underestimation of emission amount by using non-localized emission factors. It provided a way to promote localization of dust measurement for construction site and bare land, improved spatial-temporal accuracy and update efficiency.
|
Received: 23 September 2022
|
|
|
|
|
[1] 王文兴,柴发合,任阵海,等.新中国成立70年来我国大气污染防治历程、成就与经验[J]. 环境科学研究, 2019,32(10):1621-1635. Wang W X, Chai F H, Ren Z H, et al. Process, achievements and experience of air pollution control in China since the founding of the People's Republic of China 70 years ago[J]. Research of Environmental Science, 2019,32(10):1621-1635. [2] Zhang H F, Wang S X, Hao J M, et al. Air pollution and control action in Beijing[J]. Journal of Cleaner Production, 2016,112(Jan.20Pt.2):1519-1527. [3] 李 钟,王宪辉,何 佳.北京大学昌平校区燃煤锅炉清洁能源改造探析[J]. 山西建筑, 2018,44(6):194-195. Li Z, Wang X H, He J. Discussion on replacing coal burning boilers with clean energy equipment in Changping campus of PKU[J]. Shanxi Architecture. 2018,44(6):194-195. [4] 王振波,梁龙武,林雄斌,等.京津冀城市群空气污染的模式总结与治理效果评估[J]. 环境科学, 2017,38(10):4005-4014. Wang Z B, Liang L W, Lin X B, et al. Control models and effect evaluation of air pollution in jing-jin-ji urban Agglomeration[J]. Environmental Science, 2017,38(10):4005-4014. [5] 张 章,孙 峰,李 倩,等.2013~2018年北京市PM2.5污染波动特征研究[J]. 环境监控与预警, 2021,13(4):33-39. Zhang Z, Sun F, Li Q, et al. Analysis of characteristics of PM2.5 fluctuation in Beijing from 2013 to 2018[J]. Environmental monitoring and forewarning, 2021,13(4):33-39. [6] Lai Y H, Brimblecombe P. Changes in air pollution and attitude to fireworks in Beijing[J]. Atmospheric Environment, 2020,231:(Jun.):117549.1-117549.10. [7] 崔浩然,樊守彬,韩力慧,等.北京市大兴区道路积尘年际变化特征及管控研究[J]. 中国环境科学, 2021,41(10):4556-4564. Cui H R, Fan S B, Han L H, et al. Interannual variation characteristics and control of road dust in Daxing District of Beijing[J]. China Environmental Science, 2021,41(10):4556-4564. [8] 李婷婷,公福钱,赵芸程,等.北京道路尘负荷分布及对大气环境影响[J]. 环境科学学报, 2022,42(10):138-146. Li T T, Gong F Q, Zhao Y C, et al. Silt loading distribution and its influence on atmospheric environment in Beijing[J]. Acta Scientiae Circumstantiae, 2022,42(10):138-146. [9] 田 刚,李 钢,闫宝林,等.施工扬尘空间扩散规律研究[J]. 环境科学, 2008,29(1):259-262. Tian G, Li G, Yan B L, et al. Spatial dispersion laws of fugitive dust from construction sites[J]. Environmental Science, 2008,29(1):259-262. [10] 王 燕,彭 林,李丽娟,等.晋城城市扬尘化学组成特征及来源解析[J]. 环境科学, 2016,37(1):82-87. Wang Y, Peng L, Li L J, et al. Chemical Compositions and Sources Apportionment of Re-suspended Dust in Jinchen[J]. Environmental Science, 2016,37(1):82-87. [11] 徐 谦,李令军,赵文慧,等.北京市建筑施工裸地的空间分布及扬尘效应[J]. 中国环境监测, 2015,31(5):78-85. Xu Q, Li L J, Zhao W H, et al. Spatial Distribution of Building Sites and Related Emissions of Particulate Across Beijing, China[J]. Environmental Monitoring in China, 2015,31(5):78-85. [12] Liang S, Fang H, Chen. Atmospheric correction of landsat ETM+ land surface imagery-Part I:Methods[J]. IEEE Transactions on Geoscience And Remote Sensing, 2001,39(11):2490-2498. [13] Pianalto F S, Yool S R. Monitoring fugitive dust emission sources arising from construction:A remote-sensing approach[J]. GIScience and Remote Sensing, 2013,50(3):251-270. [14] 孙一鸣,张宝钢,吴其重,等.国产微景一号小卫星影像的城市裸地识别应用[J]. 自然资源遥感, 2022,34(1):189-197. Sun Y M, Zhang B G, Wu Q Z, et al. Application of domestic low-cost micro-satellite images in urban bare land identification[J]. Remote Sensing for Natural Resources, 2022,34(1):189-197. [15] 刘奥博,吴其重,陈雅婷,等.北京市平原区裸露地风蚀扬尘排放量[J]. 中国环境科学, 2018,38(2):471-477. Liu A B, Wu Q Z, Chen Y T, et al. Estimation of dust emissions from bare soil erosion over Beijing plain area[J]. China Environmental Science, 2018,38(2):471-477. [16] 秦建新,朱柯颖,吴 涛,等.长沙市城区施工扬尘和土壤扬尘污染时空特征研究[J]. 中国环境监测, 2020,36(4):69-79. Qin J X, Zhu K Y, Wu T, et al. Study on spatial and temporal characteristics of construction dust and soil dust pollution sources in urban areas of Changsha[J]. Environmental Monitoring in China, 2020,36(4):69-79. [17] 熊文成,徐永明,李京荣,等.天津市扬尘污染源中高分辨率遥感监测[J]. 遥感信息, 2017,32(3):45-49. Xiong W C, Xu Y M, Li J R, et al. Urban dust pollution sources monitoring based on medium and high resolution satellite imagery in Tianjin[J]. Remote Sensing Information, 2017,32(3):45-49. [18] 常泽巍.基于卫星遥感的运城市扬尘源颗粒物排放清单研究[D]. 北京:华北电力大学, 2020. Chang z w. Emission inventory of particulate matters from dust sources in Yuncheng based on satellite remote sensing[D]. Beijing:North China Electric Power University, 2020. [19] 姜 晟,纪轩禹,李旭文,等.江苏省工地和裸地扬尘遥感监测方法研究与结果分析[J]. 环境监控与预警, 2022,14(1):12-18. Jiang S, Ji X Y, Li X W, et al. Method study and result analysis on remote sensing monitoring of fugitive dust from construction sites and bare area in Jiangsu Province[J]. Environmental monitoring and forewarning, 2022,14(1):12-18. [20] 薛亦峰,周 震,黄玉虎,等.北京市建筑施工扬尘排放特征[J]. 环境科学, 2017,38(6):2231-2237. Xue Y F, Zhou Z, Huang Y H, et al. Fugitive Dust Emission Characteristics from Building Construction Sites of Beijing[J]. Environmental Science, 2017,38(6):2231-2237. [21] 肖 晗,杨晓春,吴其重,等.西安市建筑施工扬尘排放的模型估算[J]. 环境科学学报, 2019,39(1):222-228. Xiao H, Yang X C, Wu Q Z, et al. Estimate emissions of construction fugitive dust in Xi'an[J]. Acta Scientiae Circumstantiae, 2019,39(1):222-228. [22] 田 刚,黄玉虎,李 钢.四维通量法施工扬尘排放模型的建立与应用[J]. 环境科学, 2009,30(4):1003-1007. Tian G, Huang Y H, Li G. Establishment and Application of Four-di mensional Fluxes Emission Factor Model for Construction Fugitive Dust[J]. Environmental Science, 2009,30(4):1003-1007. [23] 黄玉虎,田 刚,秦建平,等.不同施工阶段扬尘污染特征研究[J]. 环境科学, 2007,28(12):2885-2888. Huang Y H, Tian G, Qin J P, et al. Characteristics of Fugitive Dust Pollution in Different Construction Phases[J]. Environmental Science, 2007,28(12):2885-2888. [24] Xuan J. Dust emission factors for environment of Northern China[J]. Atmospheric Environment, 1999,33(11):1767-1776. [25] 扬尘源颗粒物排放清单编制技术指南(试行)[R]. 环境保护部, 2014. Technical guide for compilation of particulate matter emission Inventory of dust source (trial)[R]. Ministry of Environmental Protection, 2014. [26] 宋立来,李廷昆,毕晓辉,等.京津冀地区高空间分辨率土壤扬尘清单构建及动态化方法[J]. 环境科学研究, 2021,34(8):1771-1781. Song L L, Li T K, Bi X H, et al. Construction and Dynamic Method of Soil Fugitive Dust Emission Inventory with High Spatial Resolution in Beijing-Tianjin-Hebei Region[J]. Research of environmental science, 2021,34(8):1771-1781. [27] 宣 捷.中国北方地面起尘总量分布[J]. 环境科学学报, 2000,20 (4):426-430. Xuan J. Dust emission inventory from ground surfaces in Northern China[J]. Acta Scientiae Circumstantiae, 2000,20(4):426-430. [28] 孙乐乐.北京地区农田土壤风蚀扬尘防治的保护性耕作措施试验研究[D]. 北京:北京林业大学, 2019. Sun L L. Experimental study on protective tillage measures for wind erosion prevention and control of farmland soils in Beijing[D]. Beijing:Beijing Forestry University, 2019. [29] 范武波,陈军辉,唐斌雁,等.成都市施工扬尘排放特征研究[J]. 中国环境科学, 2020,40(9):3767-3775. Fan W B, Chen J H, Tang B Y, et al. Dust emission characteristics of construction activities in Chengdu[J]. China Environmental Science, 2020,40(9):3767-3775. [30] 李贝贝,黄玉虎,毕晓辉,等.北京市土壤风蚀扬尘排放因子本地化[J]. 环境科学, 2020,41(6):2609-2616. Li B B, Huang Y H, Bi X H, et al. Localization of Soil Wind Erosion Dust Emission Factor in Beijing[J]. Environmental Science, 2020, 41(6):2609-2616. |
|
|
|