|
|
Abundance of aerobic ammonia-oxidizing and nirS type denitrifying microorganisms in sediments of Lancang River |
WU Zi-xian1,2, CHEN Hao-dong1,2, LI Zhu1,2,3, CHEN Zhuo4, LIAO Ming-jun1,2,3 |
1. School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan 430068, China; 2. Hubei Key Laboratory of Ecological Remediation for Rivers-Lakes and Algal Utilization, Wuhan 430068, China; 3. Cooperative Innovation Center of Industrial Fermentation, Ministry of Education & Hubei Province, Wuhan 430068, China; 4. Wuhan Huanjing Detecion Service Co. Lto., Wuhan 430048, China |
|
|
Abstract In order to explore the impact of cascade reservoir on nitrogen cycling microorganisms in the Lancang River , the abundance of ammonia oxidizing bacteria (AOB), ammonia oxidizing archaea (AOA) and nirS type denitrifying microorganisms in the river sediments were studied. Sediment samples were collected from 19 sites from Yanjing to Ganlanba in Yunnan Province. The abundance of AOB-amoA, AOA-amoA and nirS genes were quantified through qPCR. The physical and chemical factors of sediments, pore water, and water bodies were determined at the mean time. The results showed that AOB-amoA gene abundance ranged from 0.82x107 to 4.25x107 copies/g, AOA-amoA gene abundance ranged from 0.83x107 to 6.87x107 copies/g, and the nirS gene abundance ranged from 0.72x107 to 7.32x107 copies/g; the ratio of AOA/AOB is between 0.35 and 2.17, and AOA is not superior to AOB in the sediment. The abundance of AOA-amoA, AOB-amoA and nirS showed no significant difference in the river, reservoir and tributaries sites, indicating that the dam construction has no significant impact on the spatial distribution of nitrogen cycling microorganism abundances. Ammonia, total phosphorus and total nitrogen concentration in pore water are the main environmental factors affecting AOA abundance. AOB abundance is mainly affected by water temperature, total phosphorus, total nitrogen and total organic carbon content in sediments. The abundance of nirS type denitrifying microorganisms is mainly affected by total nitrogen concentration in pore water, and organic carbon content in sediment.
|
Received: 26 September 2022
|
|
|
|
|
[1] 李丽娟,李九一.澜沧江流域水资源与水环境研究[M]. 北京:科学出版社, 2016:52-61. Li L J, Li J Y. Study on water resources and water environment of Lancang River Basin[M]. Beijing:Science Press, 2016:52-61. [2] 刘松楠,汪 君.澜沧江-湄公河流域径流与气候因子变化的季节差异特征研究[J]. 大气科学学报, 2020,43(6):1031-1041. Liu S N, Wang J. Study on the seasonal different characteristics of streamflow and climate factors in the Lancang-Mekong River Basin[J]. Transactions of Atmospheric Sciences, 2020,43(6):1031-1041. [3] 郭有安,周 毅.澜沧江中下游梯级电站发电与生态需水耦合优化研究[J]. 水力发电, 2017,43(7):92-95. Guo Y A, Zhou Y. Coupling research of power generation and ecological water requirement of cascade hydropower stations in the middle and lower reaches of Lancang River[J]. Water Power, 2017, 43(7):92-95. [4] 侯保灯,朱晓旭,梁 川.岷江上游典型河段水电梯级开发水环境累积影响[J]. 人民长江, 2010,41(7):32-37. Hou B D, Zhu X X, Liang C. Water environment cumulative impact of cascade hydropower development in upper typical reaches of Minjiang River[J]. Yangtze River, 2010,41(7):32-37. [5] 陈宇琛,林育青,陈求稳,等.澜沧江高坝大库物质迁移转化特征及其机制[J]. 水科学进展, 2022,33(4):531-541. Chen Y C, Lin Y Q, Chen Q W, et al. Characteristics and associated mechanisms of substance transport and transform in large reservoirs along the Lancang River[J]. Advances in Water Science, 2022,33(4):531-541. [6] Ke X B, Angel R, Lu Y H, et al. Niche differentiation of ammonia oxidizers and nitrite oxidizers in rice paddy soil[J]. Environmental Microbiology, 2013,15(8):2275-2292. [7] Lee K H, Wang Y F, Li H, et al. Niche specificity of ammonia-oxidizing archaeal and bacterial communities in a freshwater wetland receiving municipal wastewater in Daqing, Northeast China[J]. Ecotoxicology, 2014,23(10):2081-2091. [8] Flood M, Frabutt D, Floyd D, et al. Ammonia-oxidizing bacteria and archaea in sediments of the Gulf of Mexico[J]. Environmental Technology, 2015,36(1):124-135. [9] Xia F, Zeleke J, Sheng Q, et al. Communities of ammonia oxidizers at different stages of Spartina alterniflora invasion in salt marshes of Yangtze River estuary[J]. Journal of Microbiology, 2015,53(5):311-320. [10] Reigstad L J, Richter A, Daims H, et al. Nitrification in terrestrial hot springs of Iceland and Kamchatka[J]. FEMS Microbiology Ecology, 2008,64(2):167-174. [11] Jung J, Yeom J, Kim J, et al. Change in gene abundance in the nitrogen biogeochemical cycle with temperature and nitrogen addition in Antarctic soils[J]. Research in Microbiology, 2011, 162(10):1018-1026. [12] Venter J C, Remington K, Helidelberg J F, et al. Environmental genome shotgun sequencing of the Sargasso Sea[J]. Science, 2004, 304(5667):66-74. [13] Abell G C J, Revill A T, Smith C, et al. Archaeal ammonia oxidizers and nirS-type denitrifiers dominate sediment nitrifying and denitrifying populations in a subtropical macrotidal estuary[J]. ISME Journal, 2010,4(2):286-300. [14] Zheng Y, Hou L, Liu M, et al. Diversity, abundance, and distribution of nirS-harboring denitrifiers in intertidal sediments of the Yangtze Estuary[J]. Microbial Ecology, 2015,70(1):30-40. [15] 钢迪嘎,齐维晓,刘会娟,等.水位变化对消落带氨氧化微生物丰度和多样性的影响[J]. 环境科学学报, 2017,37(5):1615-1622. Gang D G, Qi W X, Liu H J, et al. The impact of water level change on the abundance and diversity of ammonia oxidizing bacteria (AOB) and ammonia oxidizing archaea (AOA) in water-fluctuating zone[J]. Acta Scientiae Circumstantiae, 2017,37(5):1615-1622. [16] Dang C, Liu W, Lin Y, et al. Dominant role of ammonia-oxidizing bacteria in nitrification due to ammonia accumulation in sediments of Danjiangkou reservoir, China[J]. Applied Microbiology and Biotechnology, 2018,102:3399-3410. [17] 王 静,刘洪杰,雷 禹,等.三峡库区小江支流沉积物硝化反硝化速率在蓄水期和泄水期的特征[J]. 环境科学, 2017,38(3):946-953. Wang J, Liu H J, Lei Y, et al. Nitrification and denitrification rates in a small tributary, Nanhe River, of Three Gorge Dam Reservoir during water collection and release events[J]. Environmental Science, 2017,38(3):946-953. [18] Chen Q, Chen Y, Yang J, et al. Bacterial communities in cascade reservoirs along a large river[J]. Limnology and Oceanography, 2021, 66:4363-4374. [19] HJ 717-2014 土壤质量全氮的测定-凯氏法[S]. HJ 717-2014 Soil quality-Determination of total nitrogen -Modified Kjeldahl method[S]. [20] HJ632-2011 土壤总磷的测定碱熔-钼锑抗分光光度法[S]. HJ632-2011 Soil-Determination of total phosphorus by alkali fusion Mo-Sb anti specrophotometric method[S]. [21] HJ 613-2011 土壤-干物质和水分的测定-重量法[S]. HJ 613-2011 Soil-Determination of dry matter and water content-Gravimetric method[S]. [22] 国家环境保护总局.水和废水监测分析方法[M]. 北京:中国环境科学出版社, 2002:258-285. State Environmental Protection Administration. Water and wastewater monitoring and analysis methods[M]. Beijing:China Environmental Press, 2002:258-285. [23] 张志忠,程德玺,廖明军,等.武汉东湖沉积物好氧氨氧化微生物时空分布[J]. 中国环境科学, 2021,41(4):1917-1924. Zhang Z Z, Cheng D X, Liao M J, et al. Spatiotemporal distribution of aerobic ammonia-oxidizing microorganisms in sediments of Lake Donghu, Wuhan[J]. China Environmental Science, 2021,41(4):1917-1924. [24] 陈 瑾,廖明军,何绪刚,等.池塘表层底泥反硝化菌丰度与环境因子的相关性分析[J]. 淡水渔业, 2014,44(4):90-95. Chen J, Liao M J, He X G, et al. Correlation between the abundance of denitrifiers and environmental factors in aquaculture surface sediments[J]. Freshwater Fisheries, 2014,44(4):90-95. [25] Xie G J, Tang X M, Shao K Q, et al. Spatiotemporal patterns and environmental drivers of total and active bacterial abundances in Lake Taihu, China. Ecological Indicators[J]. 2020,114:106335. [26] 潘彦羽,代嫣然,王飞华,等.东湖表层沉积物中氨氧化古菌和氨氧化细菌丰度及多样性研究[J]. 水生生物学报, 2018,42(2):406-415. Pan Y Y, Dai Y R, Wang F H, et al. Abundance and diversity of ammonia-oxidizing archaea and ammonia-oxidizing bacteria in the surface sediments of Donghu Lake[J]. Acta Hydrobiologica Sinica, 2018,42(2):406-415. [27] 赵彬洁,王 旭,张 健,等.汉江流域金水河与淇河潜在硝化速率及硝化功能基因的影响因子[J]. 环境科学, 2020,41(12):5419-5427. Zhao B J, Wang X, Zhang J, et al. Influence factors of potential nitrification rates and functional genes abundance in the Jinshui River and the Qihe River of the Hanjiang River Basin[J]. Environmental Science, 2020,41(12):5419-5427. [28] 李 虎,黄福义,苏建强,等.浙江省瓯江氨氧化古菌和氨氧化细菌分布及多样性特征[J]. 环境科学, 2015,36(12):4659-4666. Li H, Huang F Y, Su J Q, et al. Distribution and diversity of ammonium-oxidizing archaea and ammonium-oxidizing bacteria in surface sediments of Oujiang River[J]. Environmental Science, 2015, 36(12):4659-4666. [29] 邹 勇,丁雪瑶,林曼霞,等.广州市流溪河沉积物反硝化细菌群落丰度与结构多样性研究[J]. 华南农业大学学报, 2018,39(3):65-72. Zou Y, Ding X Y, Lin M X, et al. Abundance and structure diversity of denitrifying bacterial community in sediments of Guangzhou Liuxi River[J]. Journal of South China Agricultural University, 2018,39(3):65-72. [30] 刘德鸿,文帅龙,龚琬晴,等.太湖沉积物反硝化功能基因丰度及其与N2O通量的关系[J]. 生态环境学报, 2019,28(1):136-142. Liu D H, Wen S L, Gong W Q, et al. The denitrifying functional gene abundance and its relation with sediment N2O flux in Taihu Lake[J]. Ecology and Environmental Sciences, 2019,28(1):136-142. [31] 程建华,窦智勇,孙庆业.铜陵市河流沉积物中硝化和反硝化微生物分布特征[J]. 环境科学, 2016,37(4):1362-1370. Cheng J H, Dou Z Y, Sun Q Y. Distribution characteristics of nitrifiers and denitrifiers in the river sediments of Tongling City[J]. Environmental Science, 2016,37(4):1362-1370. [32] 李雯雯,刘瑞志,徐慧韬,等.大辽河口及其毗邻区域水体反硝化功能基因的定量研究[J]. 环境科学研究, 2021,34(11):2625-2634. Li W W, Liu R Z, Xu H T, et al. Detection of denitrifying bacteria functional genes in Daliao River estuary and its adjacent areas by real-time quantitative PCR[J]. Research of Environmental Sciences, 2021,34(11):2625-2634. [33] Tao K, Liu Y X, Ke T, et al. Patterns of bacterial and archaeal communities in sediments in response to dam construction and sewage discharge in Lhasa River[J]. Ecotoxicology and Environmental Safety, 2019,178:195-201. [34] 董 彬,李 宝,王立志,等.橡胶坝对河流沉积物氮转化功能基因丰度和营养盐的影响[J].环境科学学报, 2022,42.DOI:10.13671/j.hjkxxb.2022.0114. Dong B, Li B, Wang L Z, et al. Effects of rubber dam on functional gene abundance of nitrogen transformation and nutrient accumulation in sediments in Yi River[J]. Acta Scientiae Circumstantiae, 2022,42. DOI:10.13671/j.hjkxxb.2022.0114. [35] 向昕怡.澜沧江功果桥水电站上下游水体和沉积物中细菌生物量时空分布及影响因素[D]. 昆明:云南大学, 2018. Xiang X Y. Spatial and temporal distribution of bacterial biomass and its influencing factiors in upstream and downstream of Gongguoqiao hydroelectric dam on the Lancang River, China[D]. Kunming:Yunnan University, 2018. [36] Wu Y, Xiang Y, Wang J, et al. Heterogeneity of archaeal and bacterial ammonia-oxidizing communities in Lake Taihu, China[J]. Environmental Microbiology Reports, 2010,2(4):569-576. [37] He S, Li Y, Mu H, et al. Ammonium concentration determines differential growth of comammox and canonical ammonia-oxidizing prokaryotes in soil microcosms[J]. Applied Soil Ecology, 2021,157:103776. [38] Herfort L, Schouten S, Abbas B. Variations in spatial and temporal distribution of Archaea in the North Sea in relation to environmental variables[J]. FEMS Microbiology Ecology, 2007,62:242-257. [39] Beman J M, Popp B N, Francis C A. Molecular and biogeochemical evidence for ammonia oxidation by marine crenarchaeota in the Gulf of California[J]. The ISME Journal, 2008,2:429-441. [40] Yang Y Y, Zhang J X, Zhao Q, et al. Sediment ammonia-oxidizing microorganisms in two plateau freshwater lakes at different trophic states[J]. Microbial Ecology, 2016,71:257-265. [41] Liu Y, Zhang J X, Zhang X L, et al. Depth-related changes of sediment ammonia-oxidizing microorganisms in a high-altitude freshwater wetland[J]. Environmental Biotechnology, 2014,98(3):5697-5707. [42] Erguder T H, Boon N, Wittebolle L, et al. Environmental factors shaping the ecological niches of ammoniaoxidizing archaea[J]. FEMS Microbiology Reviews, 2009,33:855-869. [43] Herrmann M, Scheibe A, Avrahami S, et al. Ammonium availability affects the ratio of ammonia-oxidizing bacteria to ammonia-oxidizing archaea in simulated creek ecosystems[J]. Applied and Environmental Microbiology, 2011,74(5):1896-1899. [44] 唐咏春,徐 飘,杨正健,等.澜沧江流域水体悬浮颗粒物d15N空间差异及成因分析[J]. 环境科学, 2018,39(11):4964-4971. Tang Y C, Xu P, Yang Z J, et al. Spatial difference and causes analysis of the d15N of suspended particulate matter in the Lancang River basin[J]. Environmental Science, 2018,39(11):4964-4971. [45] Wuchter C, Abbas B, Coolen M, et al. Archaeal nitrification in the ocean[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006,103:12317-12322. [46] Leininger S, Urich T, Schloter M, et al. Archaea predominate among ammonia-oxidizing prokaryotes in soils[J]. Nature, 2006:442:806-809. [47] Jin T, Zhang T, Ye L, et al. Diversity and quantity of ammonia-oxidizing archaea and bacteria in sediment of the Pearl River estuary, China[J]. Applied Microbiology and Biotechnology, 2011,90:1137-1145. [48] 储 瑜,何肖微,曾 巾,等.东太湖水产养殖对沉积物中氨氧化原核生物的影响[J]. 环境科学, 2018,39(9):4206-4214. Chu Y, He X W, Zeng J, et al. Effects of aquaculture on ammonia-oxidizing prokaryotes in sediments of Eastern Lake Taihu[J]. Environmental Science, 2018,39(9):4206-4214. [49] 王 鹏,吴 莹,刘素美,等.长江口外低氧区及其邻近海域表层沉积物反硝化微生物多样性和分布特征[J]. 微生物学报, 2021,61(6):1474-1487. Wang P, Wu Y, Liu S M, et al. Diversity and distribution of denitrifying microorganisms in the surface sediments of the hypoxic zone near the Changjiang Estuary and its offshore[J]. Acta Microbiologica Sinica, 2021,61(6):1474-1487. [50] 邓 斌.施氏假单胞菌SC221-M的反硝化特性及其调节草鱼养殖水体水质的研究[D]. 杭州:浙江大学, 2014. Deng B. Studies on denitrification characteristics of Pseudomonas stutzeri SC221-M and its application to water quality control in grass carp aquaculture[D]. Hangzhou:Zhejiang University, 2014. [51] Ward B B, Devol A H, Richl J J, et al. Denitrification as the dominant nitrogen loss process in the Arabian Sea[J]. Nature, 2009,461 (7260):78-81. [52] 王 岩,吴佳鹏,关凤杰,等.有机物消耗对珠江口沉积物反硝化和厌氧氨氧化过程的影响[J]. 生态科学, 2018,37(1):27-34. WangY, Wu J P, Guan F J, et al. Controls of organic matters on denitrification and anammox in sediments of Pearl River Estuary by mesocosm experiments[J]. Ecological Science, 2018,37(1):27-34. [53] 尹幸佳.沉水植物根系分泌有机酸对其根际nirS型反硝化菌和厌氧氨氧化菌丰度的影响[D]. 武汉:华中农业大学, 2019. Yin X J. The effect of organic acids excreted by the root of submerged macrophytes on the abundance of nirS-type denitrifiers and anammox bacteria in rhizosphere of plants[D]. Wuhan:Huazhong Agricultural University, 2019. [54] Zeng J, Zhao D, Yu Z, et al. Temperature responses of ammonia-oxidizing prokaryotes in freshwater sediment microcosms[J]. PLoS ONE, 2014,9(6):e100653.doi.org/10.1371/journal.pone.0100653. [55] Sims A, Horton J, Gajaraj S, et al. Temporal and spatial distributions of ammonia-oxidizing archaea and bacteria and their ratio as an indicator of oligotrophic conditions in natural wetlands[J]. Water Research, 2012,46:4121-4129. [56] 路俊玲,陈慧萍,肖 琳.温度和氨氮浓度对水体N2O释放的影响[J]. 中国环境科学, 2019,39(1):330-335. Lu J L, Chen H P, Xiao L. Coupling effect of temperature and ammonia on N2O emission in surface water[J]. China Environmental Science, 2019,39(1):330-335. [57] 马秀艳,蒋 磊,宋艳宇,等.温度和水分变化对冻土区泥炭地土壤氮循环功能基因丰度的影响[J]. 生态学报, 2021,41(17):6707-6717. Ma X Y, Jiang L, Song Y Y, et al. Effects of temperature and moisture changes on functional gene abundance of soil nitrogen cycle in permaforost peatland[J]. Acta Ecologica Sinica, 2021,41(17):6707-6717. |
|
|
|