|
|
Removal of opportunistic pathogens in secondary effluent from sewage plants by slow filtration |
SUN Li-hua1, WANG Chun-fang2, ZHU Jun-yao3, DENG Si2 |
1. Key Laboratory of Urban Rainwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; 2. School of Environmental and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; 3. Beijing Dongcheng District Housing and Urban Construction Committee, Beijing 100027, China |
|
|
Abstract This study investigated the removal of Pseudomonas aeruginosa in secondary effluent from sewage plants, as well as the related mechanism. Different slow filtration parameters influence on Pseudomonas aeruginosa removal such as filtration velocity, carbon nitrogen ratio, ion concentration and pH were examined. The results showed that 87.0% removal of Pseudomonas aeruginosa could be obtained under the optimizing condition with 5cm/h of filtration velocity, 10:1of C/N, 60mg/L of Ca2+ at pH7. And the biofilm on the filter surface had the highest diversity and the most uniform of the species composition under this condition, Anaplasma spp. and Nitrospira spp. accounted for the largest proportion of the relative abundance of microorganisms with removal effect on Pseudomonas aeruginosa. Mechanism study revealed that the deposition of pollutants on the biofilm surface of the filter was mainly attributed to the adhesion of extracellular polymers under 5cm/h of filtration velocity, 10:1of C/N, while the adhesion of microorganisms contributed for the deposition of pollutants under 60mg/L of Ca2+ at pH 7.
|
Received: 31 December 2022
|
|
|
|
|
[1] |
宋红梅,金玉怀,李丽婕,等.石家庄市水体环境病原菌分布的研究[J].环境与健康杂志, 2015,32(2):140-142. Song H M, Jin Y H, Li L J, et al. Study on the distribution of environmental pathogenic bacteria in Shijiazhuang city water bodies[J]. Journal of Environment and Health, 2015,32(2):140-142.
|
[2] |
Campodónico V L, Gadjeva M, Paradis-Bleau C, et al.Airway epithelial control of Pseudomonas aeruginosa infection in cystic fibrosis[J]. Trends in molecular medicine, 2008,14(3):120-133.
|
[3] |
周丽萍,郭明秋,陈华波,等.不同来源的铜绿假单胞菌的耐药性分析[J].中国实验诊断学, 2020,24(3):471-472. Zhou L P, Guo M Q, Chen H B, et al. Analysis of drug resistance of Pseudomonas aeruginosa from different sources[J]. Chinese Experimental Diagnostics, 2020,24(3):471-472.
|
[4] |
康芳芳.不同组合工艺深度处理污水厂二级出水的试验研究[D].哈尔滨:哈尔滨工业大学, 2016. Kang F F. Experimental study on the deep treatment of secondary effluent from wastewater plants by different combination processes[D]. Harbin:Harbin Institute of Technology, 2016.
|
[5] |
黄韵清,孙傅,曾思育,等.污水深度处理中超滤工艺对有机物的截留模型[J].中国环境科学, 2015,35(2):420-426. Huang Y Q, Sun F, Zeng S Y, et al. Retention model of organic matter by ultrafiltration process in deep wastewater treatment[J]. China Environmental Science, 2015,35(2):420-426.
|
[6] |
Pandey S R, Jegatheesan V, Baskaran K, et al. Fouling in reverse osmosis (RO) membrane in water recovery from secondary effluent:a review[J]. Reviews in Environmental Science and Bio/Technology, 2012,11(2):125-145.
|
[7] |
刘来胜.生物慢滤技术研究及其在集雨水饮用安全保障中的应用[D].北京:中国水利水电科学研究院, 2013. Liu L S. Research on biological slow filtration technology and its application in the security of drinking water from water harvesting[D]. Beijing:China Institute of Water Resources and Hydropower Research, 2013.
|
[8] |
Randtke S J, Horsley M B. Water treatment plant design[M]. McGraw-Hill, 2012.
|
[9] |
Bomo A M, Stevik T K, Hovi I, et al. Bacterial removal and protozoan grazing in biological sand filter[J]. Journal of Enrironmental Quality, 2004,33(3):1041-1047.
|
[10] |
齐鹏,胡春,邢学辞,等.铁改性石英砂过滤协同控制饮用水含氮消毒副产物和条件致病菌[J].环境科学, 2022,43(2):887-895. Qi P, Hu C, Xing X C, et al. Synergistic control of nitrogenous disinfection by-products and conditioned pathogens in drinking water by iron-modified quartz sand filtration[J]. Environmental Science, 2022,43(2):887-895.
|
[11] |
Dorea C C, Clarke B A. Chemically enhanced gravel pre-filtration for slow sand filters:advantages and pitfalls[J]. Water Science and Technology:Water Supply, 2006,6(1):121-128.
|
[12] |
董军.慢滤池去除原水中微量有机物及氨氮的应用研究[D].昆明:昆明理工大学, 2008. Dong J. Application study on the removal of trace organic matter and ammonia nitrogen from raw water by slow filtration tank[D]. Kunming:Kunming University of Science and Technology, 2008.
|
[13] |
李继民.不同滤料的生物慢滤柱处理微污染窖水研究[D].兰州:兰州交通大学, 2018. Li J M. Study of biological slow filtration columns with different filter media for treating micro-polluted cellar water[D]. Lanzhou:Lanzhou Jiaotong University, 2018.
|
[14] |
张文妍.曝气生物滤池预处理黄浦江上游水的生产性试验研究[D].南京:河海大学, 2003. Zhang W Y. Productive experimental study of aeration biofilter pretreatment of upper Huangpu River water[D]. Nanjing:Hohai University, 2003.
|
[15] |
Wang T, Wang X, Long Y, et al. Ion-specific conformational behavior of polyzwitterionic brushes:exploiting it for protein adsorption/desorption control[J]. Langmuir, 2013,29(22):6588-6596.
|
[16] |
Cotar A I, Chifiriuc M C, Dinu S, et al. Quantitative real-time PCR study of the influence of probiotic culture soluble fraction on the expression of Pseudomonas aeruginosa quorum sensing genes[J]. Roumanian Archives of Microbiology & Immunology, 2010,69(4):213-223.
|
[17] |
魏萍.污水中好氧环境下细菌的凝聚机理及影响研究[D].西安:西安建筑科技大学, 2020. Wei P. Study on the mechanism and influence of bacterial coagulation in aerobic environment in wastewater[D]. Xi'an:Xi'an University of Architecture and Technology, 2020.
|
[18] |
曹相生,刘杰,孟雪征,等.滤速对慢滤池深度处理生活污水的影响[J].生态环境学报, 2010,19(8):1947-1950. Cao X S, Liu J, Meng X Z, et al. Influence of filtration rate on the deep treatment of domestic wastewater in slow filtration ponds[J]. Journal of Ecology and Environment, 2010,19(8):1947-1950.
|
[19] |
李思敏,张胜,孙广垠,等.生物砂滤池除氨氮效果及影响因素分析[J].中国给水排水, 2006,22(1):74-76. Li S M, Zhang S, Sun G Y, et al. Analysis of the effect and influencing factors of ammonia nitrogen removal in biological sand filter tank[J]. China Water Supply and Drainage, 2006,22(1):74-76.
|
[20] |
王亚军,曹相生,孟雪征.不同C/N DEHP对反硝化生物滤池的影响及其去除[J].水利天地, 2015,(2):7-10. Wang Y J, Cao X S, Meng X Z. Effect of different C/N DEHP on denitrification biofilter and its removal[J]. Water World, 2015,(2):7-10.
|
[21] |
仇雁翎,赵建夫,李咏梅,等.A1-A2-O生物膜系统处理焦化废水试验中好氧段影响因素的研究[J].重庆环境科学, 2001,23(6):16-19. Qiu Y L, Zhao J F, Li Y M, et al. Study on the influencing factors of aerobic section in the experiment of A1-A2-O biofilm system for treating coking wastewater[J]. Chongqing Environmental Science, 2001,23(6):16-19.
|
[22] |
张若琳,冯东向,张发旺.进水碳氮比对悬浮载体生物膜反应器运行特性影响的研究[J].勘察科学技术, 2006,(4):24-27. Zhang R L, Feng D X, Zhang F W. Study on the effect of feedwater carbon to nitrogen ratio on the operating characteristics of suspended carrier biofilm reactor[J]. Survey Science and Technology, 2006,(4):24-27.
|
[23] |
朱哲,李涛,王东升,等.Ca2+在活性污泥生物絮凝中的作用研究[J].环境工程学报, 2009,3(4):612-616. Zhu Z, Li T, Wang D S, et al. Study on the role of Ca2+ in activated sludge bioflocculation[J]. Journal of Environmental Engineering, 2009,3(4):612-616.
|
[24] |
于柏峰,张慧云,刘冰,等.铜绿假单胞菌致病力和致病机理研究进展[J].微生物学杂志, 2004,24(1):52-53. Yu B F, Zhang H Y, Liu B, et al. Progress in the study of pathogenicity and pathogenesis of Pseudomonas aeruginosa[J]. Journal of Microbiology, 2004,24(1):52-53.
|
[25] |
张颖.Ca2+、Mg2+强化Pesudomonoas stutzeri XL-2生物膜形成的机理研究[D].重庆:重庆大学, 2019. Zhang Y. Mechanisms of Ca2+ and Mg2+-enhanced biofilm formation in Pesudomonoas stutzeri XL-2[D]. Chongqing:Chongqing University, 2019.
|
[26] |
李明远.微生物学与免疫学[M].北京:高等教育出版社, 2010:290. Li M Y, Microbiology and Immunology[M]. Beijing:Higher Education Press, 2010:290.
|
[27] |
Hasan H A, Muhammad M H, Ismail N. A review of biological drinking water treatment technologies for contaminants removal from polluted water resources[J]. Journal of Water Process Engineering, 2020,33:101035.
|
[28] |
董庆利,姚远,赵勇,等.铜绿假单胞菌的温度、pH值和乳酸钠主参数模型构建[J].农业机械学报, 2014,45(1):197-202. Dong Q L, Yao Y, Zhao Y, et al. Model construction of the main parameters of temperature, pH and sodium lactate for Pseudomonas aeruginosa[J]. Journal of Agricultural Machinery, 2014,45(1):197-202.
|
[29] |
Wang F, Devine C L, Edwards M A. Effect of corrosion inhibitors on in situ leak repair by precipitation of calcium carbonate in potable water pipelines[J]. Environmental Science & Technology, 2017, 51(15):8561-8568.
|
[30] |
Cui Q, Fang T, Huang Y, et al. Evaluation of bacterial pathogen diversity, abundance and health risks in urban recreational water by amplicon next-generation sequencing and quantitative PCR[J]. Journal of Environmental Science, 2017,57:137-149.
|
[31] |
Sun J, Guo L, Li Q. et al. Structural and functional properties of organic matters in extracellular polymeric substances (EPS) and dissolved organic matters (DOM) after heat pretreatment with waste sludge[J]. Bioresource Technology, 2016,219:614-623.
|
[32] |
Ferguson A S, Layton A C, Mailloux B J, et al. Comparison of fecal indicators with pathogenic bacteria and rotavirus in groundwater[J]. Science of the Total Environment, 2012,431(5):314-322.
|
[33] |
金舒敏.NOM超滤膜污染的界面作用解析及高级氧化预处理研究[D].哈尔滨:哈尔滨工业大学, 2018. Jin S M. Analysis of interfacial effects of NOM ultrafiltration membrane contamination and advanced oxidation pretreatment study[D]. Harbin:Harbin Institute of Technology, 2018.
|
[34] |
Chen X, Stewart P S. Biofilm removal caused by chemical treatments[J]. Water Research, 2000,34(17):4229-4233.
|
[35] |
熊雪君.二沉池出水有机物混凝机制与膜污染控制研究[D].武汉:华中科技大学, 2019. Xiong X J. Study on coagulation mechanism and membrane pollution control of organic matter in secondary sedimentation tank effluent[D]. Wuhan:Huazhong University of Science and Technology, 2019.
|
[36] |
Osunmakinde C O, Selvarajan R, Mamba B B, et al. Profiling bacterial diversity and potential pathogens in wastewater treatment plants using high-throughput sequencing analysis[J]. Microorganisms, 2019,7(11):506.
|
[37] |
李默.氧化-超滤工艺对污水厂二级出水有机物及生物毒性削减效能的研究[D].哈尔滨:哈尔滨工业大学, 2019. Li M. Study on the efficacy of oxidation-ultrafiltration process on the reduction of organic matter and biotoxicity in secondary effluent of wastewater plants[D]. Harbin:Harbin Institute of Technology, 2019.
|
[38] |
More T T, Yadav J S S, Yan S, et al. Extracellular polymeric substances of bacteria and their potential environmental applications[J]. Journal of Environmental Management, 2014,144:1-25.
|
[39] |
van der Wielen P W J J, Van der kooij D. Nontuberculous mycobacteria, fungi, and opportunistic pathogens in unchlorinated drinking water in the Netherlands[J]. Applied & Environmental Microbiology, 2013,79(3):825-834.
|
[40] |
Huang J G, Chen S S, Ma X, et al. Opportunistic pathogens and their health risk in four full-scale drinking water treatment and distribution systems[J]. Ecological Engineering, 2021,160:106-134.
|
|
|
|