|
|
Research on automatic extraction method of thermal discharge |
ZHU Xiu-fang1,2, LI Yuan3,4 |
1. State Key Laboratory of Remote Sensing Science, Beijing Normal University, Beijing 100875, China; 2. Institute of Remote Sensing Science and Engineering, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China; 3. The Inner Mongolia Key Laboratory of River and Lake Ecology, Hohhot 010021, China; 4. School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China |
|
|
Abstract To solve the problems of low automation and poor timeliness of existing algorithms for remote sensing thermal discharge detection, this study proposes an automated extraction method for thermal discharge based on the single-temporal thermal infrared band, called IForest-SVM. The Fuqing Nuclear Power Plant in Fujian Province was taken as an example to test and verify the proposed method using four Landsat-8 remote sensing images from October 2018 to January 2019. IForest-SVM first uses isolation forest to automatically extract samples of thermal discharge and normal water bodies, then purifies the thermal discharge samples by their spatial adjacency relationship with discharge outlets. After that, a support vector machine is used to extract thermal discharge pixels, and misclassified pixels are removed based on their spatial adjacency relationship with discharge outlets to obtain the final spatial distribution of thermal discharge. The test results show that the average values of user accuracy and producer accuracy of thermal discharge detected by the proposed method on three images on November 15, 2018, December 1, 2018, and January 18, 2019 were 89.69%, 94.97%, and 90.04%, respectively. No false alarms occurred on the image without thermal discharge on October 30, 2018, effectively avoiding false detections. IForest-SVM only requires input of the thermal infrared band of remote sensing images without additional parameters, and has the advantages of good portability, strong applicability, and high automation. It has a good application potential in the real-time monitoring and rapid detection of thermal discharge.
|
Received: 21 March 2023
|
|
|
|
|
[1] |
Liu M, Yin X, Xu Q, et al. Monitoring of fine-scale warm drain-off water from nuclear power stations in the daya bay based on landsat 8data [J]. Remote Sensing, 2020,12(4):627-648.
|
[2] |
Verones F, Hanafiah M M., Pfister S, et al. Characterization factors for thermal pollution in freshwater aquatic environments [J]. Environmental Science & Technology, 2010,44(24):9364-9369.
|
[3] |
於凡,张永兴.滨海核电站温排水对海洋生态系统影响的研究[J]. 辐射防护通讯, 2008,(1):1-7. Yu F, ZhangY X. The review onthe effects of thermal effluent from nuclear plants on the marine ecosystem [J]. Radiation Protection Newsletter, 2008,(1):1-7.
|
[4] |
贺立燕,宋秀贤,於凡,等.潜在影响防城港核电冷源系统的藻类暴发特点及其监测防控技术[J]. 海洋与湖沼, 2019,50(3):700-706. He L Y, Song X X, Yu F, et al. potential risk and prevention of phytoplankton outbreak to water-cooling system in nuclear power plant in Fangchenggang, Guangxi [J]. Oceanologia Et Limnologia Sinica, 2019,50(3):700-706.
|
[5] |
刘永叶,陈晓秋.核电厂温排水热影响研究的建议[J]. 辐射防护通讯, 2011,31(6):20-23. Liu Y Y, Chen X Q. Suggestion of the study on thermal impact of thermal discharge from NPPs [J]. Radiation Protection Newsletter, 2011,31(6):20-23.
|
[6] |
张琨,张爱玲,覃春丽,等.CORMIX与二维数模、物模在滨海核电厂温排水近区模拟中的比对研究[J]. 海洋科学进展, 2017,35(1):117-123. Zhang K, Zhang A L, Qin C L, et al. Comparison between CORMIX and traditional models on the simulation of coastal nuclear power plant water discharge [J]. Advances in Marine Science, 2017,35(1):117-123.
|
[7] |
赵强,曹维,邢健,等.基于现场观测数据的三门核电站冬季温排水时空特征分析[J]. 海洋环境科学, 2022,41(6):847-856. Zhao Q, Cao W, Xing J, et al. Spatio-temporal characteristics of thermal discharge from Sanmen Nuclear Power Plant in winter based on field observations [J]. Marine Environmental Science, 2022,41(6):847-856.
|
[8] |
Muthulakshmi A, Natesan U, Ferrer V A,et al. A novel technique to monitor thermal discharges using thermal infrared imaging [J]. Environmental Science:Processes & Impacts, 2013,15(9):1729-1734.
|
[9] |
何园.遥感技术在核电站温排水影响范围监测中的应用[J]. 科技创新与应用, 2016,(18):71. He Y. Application of remote sensing technology in monitoring the scope of influence of warm drainage in nuclear power plants [J]. Technological Innovation and Application, 2016,(18):71.
|
[10] |
姜晟,李俊龙,李旭文,等.核电站温排水遥感监测方法研究——以田湾核电站为例[J]. 中国环境监测, 2013,29(6):212-216. Jiang S, Li J L, Li X W, et al. A research on the remote sensing monitoring method with the thermal discharge of Tian-wan nuclear power station [J]. Environmental Monitoring in China, 2013,29(6):212-216.
|
[11] |
姚沛林.滨海核电厂温排水的监测与实践[J]. 红外, 2013,34(11):43-48. Yao P L. Monitoring of warm water discharged from coastal nuclear power plant [J]. Infraied, 2013,34(11):43-48.
|
[12] |
贺佳惠,梁春利,李名松.核电站近岸温度场航空热红外遥感测量数据处理研究[J]. 国土资源遥感, 2010,(3):51-53. He J H, Liang C L, Li M S. Temperature field airborne thermal remote sensing surveyof the alongshore nuclear power station [J]. Remote Sensing for Land & Resources, 2010,(3):51-53.
|
[13] |
张晓峰,徐京萍,张曼祺,等.Landsat-8热红外数据监测田湾核电站温排水分布[J]. 海洋科学进展, 2019,37(3):518-525. Zhang X F, Xu J P, Zhang M Q, et al. Distribution of thermal discharge from Tianwan nuclear power plant:analysis of thermal infrared data from landsat-8[J]. Advances in Marine Science, 2019,37(3):518-525.
|
[14] |
王祥,苏岫,张浩,等.不同空间分辨率遥感数据在核电站温排水监测中的应用研究[J]. 海洋环境科学, 2020,39(4):646-651. Wang X, Su X, Zhang H, et al. Remote sensing based application research of nuclear power plant thermal plume monitoring with different spatial resolution imagery [J]. Marine Environmental Science, 2020,39(4):646-651.
|
[15] |
张彩,朱利,贾祥,等.不同空间分辨率热红外数据在近海核电厂温排水监测一致性研究[J]. 遥感信息, 2015,30(2):71-76. Zhang C, Zhu L, Jia X, et al. Consistency of different spatial resolution thermal infrared data in monitoring thermal discharge of nuclear power plant in coastal area [J]. Remote Sensing Information, 2015, 30(2):71-76.
|
[16] |
梁珊珊,张兵,李俊生,等.环境一号卫星热红外数据监测核电站温排水分布——以大亚湾为例[J]. 遥感信息, 2012,(2):41-46. Liang S S, Zhang B, Li J S,et al. Distribution of therm-water pollution of nuclear power plant using the thermal infrared band of HJ-IRS data-taking Daya Bay as an example [J]. Remote Sensing Information, 2012, (2):41-46.
|
[17] |
周颖,巩彩兰,匡定波,等.基于环境减灾卫星热红外波段数据研究核电厂温排水分布[J]. 红外与毫米波学报, 2012,31(6):544-549. Zhou Y, Gong C L, Kuang D B, et al. Distribution of thermal discharge from a power plant:Analysis of thermal infrared data from the environmental mitigation satellite [J]. J. Infrared Millim. Waves, 2012,31(6):544-549.
|
[18] |
Tang D, Kester D R, Wang Z,et al. AVHRR satellite remote sensing and shipboard measurements of the thermal plume from the Daya Bay, nuclear power station, China [J]. Remote Sensing of Environment, 2003,84(4):506-515.
|
[19] |
McClain E P, Pichel W G, Walton C C. Comparative performance of AVHRR-based multichannel sea surface temperatures [J]. Journal of Geophysical Research:Oceans, 1985,90(C6):11587-11601.
|
[20] |
Chen C, Shi P, Mao Q. Application of remote sensing techniques for monitoring the thermal pollution of cooling-water discharge from nuclear power plant [J]. Journal of Environmental Science and Health, Part A, 2003,38(8):1659-1668.
|
[21] |
Mustard J, Carney M, Sen A. The use of satellite data to quantify thermal effluent impacts [J]. Estuarine, Coastal and Shelf Science, 1999,49(4):509-524.
|
[22] |
Gibbons D, Wukelic G, Leighton J, et al. Application of landsat thematic mapper data for coastal thermal plume analysis at Diablo Canyon [J]. Photogrammetric Engineering and Remote Sensing;(USA), 1989,55:
|
[23] |
朱利,赵利民,王桥,等.核电站温排水分布卫星遥感监测及验证[J]. 光谱学与光谱分析, 2014,34(11):3079-3084. Zhu L, Zhao L M,Wang Q, et al. Monitoring the thermal plume from coastal nuclear power plant using satellite remote sensing data:modeling and validation [J]. Spectroscopy and Spectral Analysis, 2014,34(11):3079-3084.
|
[24] |
许静,朱利,姜建,等.基于HJ-1B与TM热红外数据的大亚湾核电基地温排水遥感监测[J]. 中国环境科学, 2014,34(5):1181-1186. Xu J, Niu L, Jiang J, et al. Monitoring thermal discharge in Daya Bay plant based on thermal infrared band of HJ-1B and TM remote sensing data [J]. China Environmental Science, 2014,34(5):1181-1186.
|
[25] |
Benoit J, Fox-Kemper B. Contextualizing thermal effluent impacts in narragansett bay using Landsat-derived surface temperature [J]. Frontiers in Marine Science, 2021,8:705204.
|
[26] |
Liu Y, Huang S, Yi P,et al. The thermal discharge retrieve and analysis of Hongyanhe district with Landsat-8 and GF-5 Image [C]//Proceedings of the IOP Conference Series:Earth and Environmental Science, F, 2020.IOP Publishing.
|
[27] |
Wu C, Wang Q, Yang Z,et al. Monitoring heated water pollution of the DaYaWan nuclear power plant using TM images [J]. International Journal of Remote Sensing, 2007,28(5):885-890.
|
[28] |
Nie P, Zhu H, Xu H,et al. Monitoring of Tianwan nuclear power plant thermal pollution based on remotely sensed landsat data [C]//Proceedings of the IGARSS 2020-2020 IEEE International Geoscience and Remote Sensing Symposium, F, 2020. IEEE.
|
[29] |
Ma P, Dai X, Guo Z,et al. Detection of thermal pollution from power plants on China's eastern coast using remote sensing data [J]. Stochastic Environmental Research and Risk Assessment, 2017,(31):1957-1975.
|
[30] |
Bau H Y, Wu L C, Chuang L Z H. Detection of thermal effluent discharge using sea surface nautical radar images [J]. IEEE Geoscience and Remote Sensing Letters, 2012,10(3):612-616.
|
[31] |
王祥,王新新,苏岫,等.无人机平台航空遥感监测核电站温排水——以辽宁省红沿河核电站为例[J]. 自然资源遥感, 2018,30(4):182-186. Wang X, Wang X X, Su X, et al. Thermal discharge monitoring of nuclear power plant with aerial remote sensing technology using a UAV platform:Take Hongyanhe Nuclear Power Plant, Liaoning Province, as example [J]. Remote Sensing for Land & Resources, 2018,30(4):182-186.
|
[32] |
孙芹芹,张加晋,姬厚德,等.基于卫星和无人机的后石电厂温排水分布研究[J]. 应用海洋学学报, 2020,39(2):261-265. Sun Q Q, Zhang J J, Ji H D, et al. Distribution of thermal water around Houshi Power Plant based on landsat 8 and Uva study [J]. Journal of Applied Oceanography, 2020,39(2):261-265.
|
[33] |
Jiménez-Muñoz J C, Sobrino J A. A generalized single-channel method for retrieving land surface temperature from remote sensing data [J]. Journal of geophysical research:Atmospheres, 2003,108(D22):
|
[34] |
Wan Z, Dozier J. A generalized split-window algorithm for retrieving land-surface temperature from space [J]. IEEE Transactions on Geoscience and Remote Sensing, 1996,34(4):892-905.
|
[35] |
Wan Z M, Li Z L. A physics-based algorithm for retrieving land-surface emissivity and temperature from EOS/MODIS data [J]. IEEE Transactions on Geoscience and Remote Sensing, 1997,35(4):980-996.
|
[36] |
Liu F T, Ting K M, Zhou Z H. Isolation-based anomaly detection [J]. ACM Transactions on Knowledge Discovery from Data, 2012:6(1):1-39.
|
[37] |
董双发,范晓,石海岗,等.基于Landsat8和无人机的福清核电温排水分布研究[J]. 自然资源遥感, 2022,34(3):112-120. Dong S F, Fan X, Shi H G, et al. Study on distribution of thermal discharge in Fuqing nuclear power plant based on landsat8 and UAV [J]. Remote Sensing for Natural Resources, 2022,34(3):112-120.
|
[38] |
Feyisa G L, Meilby H, Fensholt R,et al. Automated water extraction index:a new technique for surface water mapping using Landsat imagery [J]. Remote Sensing of Environment, 2014,140:23-35.
|
[39] |
Liu F T, Ting K M, Zhou Z H. Isolation forest [C]//Proceedings of the 2008 Eighth Ieee International Conference on Data Mining, F, 2008. IEEE.
|
[40] |
Liu F T, Ting K M, Zhou Z H. Isolation-based anomaly detection [J]. ACM Transactions on Knowledge Discovery from Data (TKDD), 2012,6(1):1-39.
|
|
|
|