|
|
Strength and leaching characteristics of CGF solidification/stabilization heavy metal contaminated soil |
CHANG Rui-qing1,2, YANG Jun-jie1,2, WU Ya-lei1,2, LU Rui-fan1,2 |
1. Key Lab of Marine Environmental and Ecology, Ministry of Education, Qingdao 266100, China; 2. College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China |
|
|
Abstract Contaminated soils with different soil types (different proportions of clay, silt and sand) and different composite heavy metals (Cu, Ni, Pb and Zn) content were solidified/stabilized by CGF(a solid waste based binder composed of calcium carbide residue(CCR), ground granulated blastfurnace slag(GGBS) and fly ash(FA)), macro and micro tests were conducted to study the strength characteristics, heavy metal leaching characteristics and solidification/stabilization mechanism of the solidified/stabilized contaminated soil. The results show that the strength and leaching concentration of heavy metal contaminated soil solidified/stabilized by CGF were mainly determined by curing time, heavy metal content and soil type; With the increase of curing time, the strength of solidified/stabilized contaminated soil gradually increased, leaching concentration was negatively correlated with curing time, there is a "critical content" of heavy metal, which was controlled by the type of heavy metal ions and the type of soil. The "critical content" of solidified/stabilized Clay contaminated soil at 7, 28 and 90d were respectively 200, 300 and 600mg/kg; the "critical content" of solidified/stabilized Clay, CSSM511 and CSSM111 contaminated soil at 28d were respectively 300, 200 and 200mg/kg, solidified/stabilized CSSM011 contaminated soil didn’t exist "critical content". The mechanism of CGF solidification/ stabilization heavy metal contaminated soil includes the stabilization of heavy metal ions by chemical precipitation, encapsulation, adsorption and ion exchange of the and the stabilization of heavy metal ions by clay mineral in the soil.
|
Received: 06 October 2023
|
|
|
|
|
[1] 董金梅,罗丹,徐洪钟,等.碱激发胶凝材料固化铜污染土试验研究[J].应用基础与工程科学学报, 2023,31(2):498-508. Dong J M, Luo D, Xu H Z, et al. Test study on solidification of copper contaminated soil by alkali activated cementitious Materials[J]. Journal of Basic Science and Engineering, 2023,31(2):498-508. [2] 冯亚松,杜延军,周实际,等.活化钢渣在固化稳定化工业重金属污染土中的应用[J].岩土工程学报, 2018,40(S2):112-116. Feng Y S, Du Y J, Zhou S J, et al. Utilization of activated steel slag to solidify/stabilize industrially heavy-metal contaminated soils[J]. Chinese Journal of Geotechnical Engineering, 2018,40(S2):112-116. [3] 李丽华,韩琦培,肖衡林,等.电石渣-稻壳灰固化铜污染土抗压强度及环境特性研究[J].铁道科学与工程学报, 2023,20(8):2878-2888. Li L H, Han Q P, Xiao H L, et al. Compressive strength and leaching characteristics of copper contaminated soil solidified by calcium carbide residue-rice husk ash[J]. Journal of Railway Science and Engineering, 2023,20(8):2878-2888. [4] Jin F, Al-Tabbaa A. Evaluation of novel reactive MgO activated slag binder for the immobilization of lead and zinc[J]. Chemosphere, 2014,117:285-294. [5] Li J S, Xue Q, Wang P, et al. Effect of lead (II) on the mechanical behavior and microstructure development of a Chinese clay[J]. Applied Clay Science, 2015,105:192-199. [6] Dutta J, Mishra A K. Influence of the presence of heavy metals on the behavior of bentonites[J]. Environmental Earth Sciences, 2016,75(11):1-10. [7] Zha F S, Zhu F H, Xu L, et al. Laboratory study of strength, leaching, and electrical resistivity characteristics of heavy-metal contaminated soil[J]. Environmental Earth Sciences, 2021,80(5):184. [8] Du Y J, Jiang N J, Liu S Y, et al. Engineering properties and microstructural characteristics of cement-stabilized zinc-contaminated kaolin[J]. Canadian Geotechnical Journal, 2014,51(3):289-302. [9] Liu L, Li Y, Liu X, et al. Chelating stability of an amphoteric chelating polymer flocculant with Cu (II), Pb (II), Cd (II), and Ni (II)[J]. Spectrochimica Acta Part A-molecular and Biomolecular Spectroscopy, 2014,118:765-775. [10] Zhou C, He Y, Gao Z, et al. Sex differences in the effects of lead exposure on growth and development in young children[J]. Chemosphere, 2020,250:126294. [11] 考希宾,王治伦,高艳.微量元素锌和人体健康[J].中国地方病防治, 2007,22(3):192-194. Kao X B, Wang Z L, Gao Y. Trace element zinc and human health[J]. Chinese Journal of Control of Endemic Diseases, 2007,22(3):192-194. [12] Chen Q Y, Tyrer M, Hills C D, et al. Immobilization of heavy metal in cement-based solidification/stabilization:A review[J]. Waste Management, 2009,29(1):390-403. [13] Du Y J, Jiang N J. Stabilization/solidification of contaminated soils:a case study[M]. Elsevier, Amsterdam, 2022:75-92. [14] United States Environmental Protection Agency (US EPA). Treatment technologies for site cleanup:Annual Status Report (Twelfth Edition). [15] 武亚磊,杨俊杰.土体固化剂-材料·作用机理·应用[M].北京:化学工业出版社, 2022. Wu Y L, Yang J J. Soil Stabilizer:Materials, Mechanism and Applications[M]. Beijing:Chemical Industry Press, 2022. [16] Guerrero L A, Maas G, Hogland W. Solid waste management challenges for cities in developing countries[J]. Waste Management, 2013,33(1):220-232. [17] 刘松玉,詹良通,胡黎明,等.环境岩土工程研究进展[J].土木工程学报, 2016,49(3):6-30. Liu S Y, Zhan L T, Hu L M, et al. Environmental geotechnics:state-of-the-art of theory, testing and application to practice[J]. China Civil Engineering Journal, 2016,49(3):6-30. [18] Du Y J, Jiang N J, Liu S Y, et al. Engineering properties and microstructural characteristics of cement-stabilized zinc-contaminated kaolin[J]. Canadian Geotechnical Journal, 2014,51(3):289-302. [19] 陈蕾,刘松玉,杜延军,等.水泥固化重金属铅污染土的强度特性研究[J].岩土工程学报, 2010,32(12):1898-1903. Chen L, Liu S Y, Du Y J, et al. Unconfined compressive strength properties of cement solidified/stabilized lead-contaminated soils[J]. Chinese Journal of Geotechnical Engineering, 2010,32(12):1898-1903. [20] 车宁,孙英杰,王华伟,等.基于固化法共处置飞灰和浓缩液浸出特性研究[J].中国环境科学, 2020,40(1):312-319. Che N, Sun Y J, Wang H W, et al. Leaching characteristics of fly ash and concentrate treated by solidification method[J]. China Environmental Science, 2020,40(1):312-319. [21] 刘建,何亮,骆成杰,等.生活垃圾焚烧飞灰固化体重金属动态浸出规律[J].中国环境科学, 2019,39(3):1087-1093. Liu J, He L, Luo C J, et al. Dynamic leaching rule of heavy metals in solidified body of fly ash from MSW incineration[J]. China Environmental Science, 2019,39(3):1087-1093. [22] 武亚磊.全固废固化剂固化/稳定化重金属机理与工程应用[D].青岛:中国海洋大学, 2022. Wu Y L. Mechanism and engineering application of All-solid-waste binders Solidified/Stabilized heavy metal contaminated soil[D]. Qingdao:Ocean University of China, 2022. [23] Shi C J, Roy D, Krivenko P. Alkali-activated cements and concretes[M]. CRC press, Florida, 2003. [24] Provis J L. Alkali-activated materials[J]. Cement and Concrete Research, 2018,114:40-48. [25] Horpibulsuk S, Phetchuay C, Chinkulkijniwat A, et al. Strength development in silty clay stabilized with calcium carbide residue and fly ash[J]. Soils and Foundations, 2013,53(4):477-486. [26] Wu Y L, Yang J J, Chang R Q. The design of ternary all-solid-waste binder for solidified soil and the mechanical properties, mechanism and environmental benefits of CGF solidified soil[J]. Journal of Cleaner Production, 2023,429:139439. [27] Yi Y L, Gu L Y, Liu S Y, et al. Carbide slag-activated ground granulated blast furnace slag for soft clay stabilization[J]. Canadian Geotechnical Journal, 2014,52(5):656-663. [28] Siddiqua S, Barreto P N M. Chemical stabilization of rammed earth using calcium carbide residue and fly ash[J]. Construction and Building Materials, 2018,169:364-371. [29] Li W T, Yi Y L, Anand J P. Comparing carbide sludge-ground granulated blastfurnace slag and ordinary Portland cement:Different findings from binder paste and stabilized clay slurry[J]. Construction and Building Materials, 2022,321:126382. [30] Wang F, Pan H, Xu J. Evaluation of red mud based binder for the immobilization of copper, lead and zinc[J]. Environmental Pollution, 2020,263:114416. [31] Wang L, Chen L, Tsang D C W, et al. Mechanistic insights into red mud, blast furnace slag, or metakaolin assisted stabilization/solidification of arsenic-contaminated sediment[J]. Environment International, 2019,133:105247. [32] Zacco A, Borgese L, Gianoncelli A, et al. Review of fly ash interstation treatments and recycling[J]. Environmental Chemistry Letters, 2014,12(1):153-175. [33] Wu Y L, Yang J J, Chang R Q, et al. Strength, leaching characteristics and microstructure of CGF+P all-solid-waste binder solidification/stabilization Cu (Ⅱ) contaminated soil[J]. Construction and Building Materials, 2024,411:134431. [34] Sun Y J, Ma J, Chen Y G, et al. Mechanical behavior of copper-contaminated soil solidified/stabilized with carbide slag and metakaolin[J]. Environmental Earth Sciences, 2020,79(18):1-13. [35] 李丽华,方亚男,肖衡林,等.赤泥复合物固化/稳定化镉污染土特性研究[J].岩土力学, 2022,43(S1):193-202. Li L H, Fang Y N, Xiao H L, et al. Characterization of Cd-contaminated soil solidified/stabilized by red mud-based binders[J]. Rock and Soil Mechanics, 2022,43(S1):193-202. [36] Feng Y S, Du Y J, Zhou A N, et al. Geoenvironmental properties of industrially contaminated site soil solidified/stabilized with a sustainable by-product-based binder[J]. Science of the Total Environment, 2021,765:142778. [37] 陈永贵,朱申怡,谭邦宏,等.电石渣/偏高岭土固化铜污染土淋滤特性试验[J].同济大学学报(自然科学版), 2018,46(2):182-187. Chen Y G, Zhu S Y, Tan B H, et al. Leaching characteristic of solidification/stabilization for Cu2+contaminated soil with carbide slag and metakaolin[J]. Journal of Tongji University (Natual science), 2018,46(2):182-187. [38] 陈永贵,潘侃,谭邦宏,等.电石渣/偏高岭土固化铜污染土的浸泡试验研究[J].中南大学学报(自然科学版), 2018,49(3):678-683. Chen Y G, Pan K, Tan B H, et al. Soaking experimental study on solidification/stabilization for Cu2+contaminated soil with carbide slag and metakaolin[J]. Journal of Central South University (Science and Technology), 2018,49(3):678-683. [39] Guo X L, Hu W P, Shi H S. Microstructure and self-solidification/stabilization (S/S) of heavy metals of nano-modified CFA-MSWIFA composite geopolymers[J]. Construction and Building Materials. 2014,56:81-86. [40] Zhang Y S, Sun W, Chen Q L, et al. Synthesis and Heavy Metal Immobilization Behaviors of Slag Based Geopolymer[J]. Journal of Hazardous Materials, 2007,143(1/2):206-213. [41] Wang Y G, Han F L, Mu J Q. Solidification/stabilization mechanism of Pb (II), Cd (II), Mn (II) and Cr (III) in fly ash based geopolymers[J]. Construction and Building Materials, 2018:818-827. [42] Chao L, Zhao F Q. Application of fly ash/granulated blast-furnace slag cementing material for immobilization of Pb2+[J]. MATEC Web of Conferences, 2018,175(5):01020. [43] 李丽华,李欣,李文涛,等.固废基材料固化铜污染土的强度及浸出特性[J].有色金属工程, 2023,13(1):136-142. Li L H, Li X, Li W T, et al. Strength and leaching characteristics of copper contaminated soil solidified with solid waste based materials[J]. Nonferrous Metals Engineering, 2023,13(1):136-142. [44] Cardoso A F, Fernandes H C, Pileggi R G, et al. Carbide lime and industrial hydrated lime characterization[J]. Powder Technology, 2009, 195(2). [45] Jiang N J, Du Y J, Liu S Y, et al. Multi-scale laboratory evaluation of the physical, mechanical, and microstructural properties of soft highway subgrade soil stabilized with calcium carbide residue[J]. Canadian Geotechnical Journal, 2015,53(3):373-383. [46] Liu G F, Meng J, Huang Y L, et al. Effects of carbide slag, lodestone and biochar on the immobilization, plant uptake and translocation of As and Cd in a contaminated paddy soil[J]. Environmental Pollution, 2020,266:115194. [47] 黄占斌,王平,李昉泽.环境材料在矿区土壤修复中的应用[M].北京:科学出版社, 2020. Huang Z B, Wang P, Li F Z. Application of Environmental Materials in Soil Restoration in Mining Areas[M]. Beijing:Science Press, 2020. [48] 张金池,姜姜,朱丽珺,等.黏土矿物中重金属离子的吸附规律及竞争吸附[J].生态学报, 2007,(9):3811-3819. Zhang J C, Jiang J, Zhu L J, et al. Adsorption and competitive adsorption of heavy metal ion by clay mineral[J]. Acta Ecological Sinica, 2007,(9):3811-3819. [49] 陈少航.Pb2+、Zn2+和Cd2+在尿素-高岭石插层复合体中吸附特征的分子模拟[D].太原:太原理工大学, 2022. Chen S H. Molecular simulation of adsorption characteristics of Pb2+, Zn2+and Cd2+in urea kaolinite intercalation complex[D]. Taiyuan:Taiyuan University of Technology, 2022. [50] 魏明俐,杜延军,张帆.水泥固化/稳定锌污染土的强度和变形特性试验研究[J].岩土力学, 2011,32(S2):306-312. Wei M L, Du Y J, Zhang F. Fundamental properties of strength and deformation of cement solidified/stabilized zinc contaminated soils[J]. Rock and Soil Mechanics, 2011,32(S2):306-312. [51] Wang J, Chian S C, Ma T, et al. Stabilization of dredged clays with ternary alkali-activated materials:towards sustainable solid wastes recycling[J]. Journal of Cleaner Production, 2023,426:139086. [52] Wu J, Deng Y F, Zhang G P, et al. A Generic Framework of Unifying Industrial By-products for Soil Stabilization[J]. Journal of Cleaner Production, 2021,321:128920. [53] Chian C S, Bi J. Influence of grain size gradation of sand impurities on strength behaviour of cement-treated clay[J]. Acta Geotechnica, 2020,16(4):1-19. [54] Yang Z P, Wang Y, Li X Y, et al. The effect of long-term freeze-thaw cycles on the stabilization of lead in compound solidified/stabilized lead-contaminated soil[J]. Environmental Science and Pollution Research, 2021,28:37413-37423. [55] 王瑶,杨忠平,周杨,等.长期冻融循环下固化铅锌镉复合重金属污染土抗剪强度及浸出特征研究[J].中国环境科学, 2022,42(7):3276-3284. Wang Y, Yang Z P, Zhou Y, et al. Shear strength and leaching characteristics of solidified lead-zinc-cadmium composite heavy metal contaminated soil under long-term freeze-thaw cycles[J]. China Environmrntal Science, 2022,42(7):3276-3284. [56] GB/T 50123-2019土工试验方法标准[S]. GB/T 50123-2019 Standards for geotechnical testing method[S]. [57] GB/T 50145-2007土的工程分类标准[S]. GB/T 50145-2007 Standard for engineering classification of soil[S]. [58] 刘金都,冯晨,李江山,等.砷、镉复合重金属污染土土-水特性及微观机制研究[J].岩土力学, 2022,43(10):2841-2851. Liu J D, Feng C, Li J S, et al. Soil-water characteristic and microscopic mechanism of arsenic and cadmium composite heavy metal contaminated soil[J]. Rock and Soil Mechanics, 2022,43(10):2841-2851. [59] 冯晨,李江山,刘金都,等.砷、镉复合污染土击实特性及微观结构试验研究[J].岩土力学, 2022,43(S2):171-182. Feng C, Li J S, Liu J D, et al. Experimental study on the compaction characteristics and microstructure of arsenic and cadmium co-contaminated soil[J]. Rock and Soil Mechanics, 2022,43(S2):171-182. [60] HJ/T 300-2007固体废物浸出毒性浸出方法醋酸缓冲溶液法[S]. HJ/T 300-2007 Solid waste Extraction procedure for leaching toxicity-Acetic acid buffer solution method[S]. [61] EPA method 9100. Saturated hydraulic conductivity, saturated leachate conductivity, and intrinsic permeability[S]. [62] Yousuf M, Mollah A, Vempatir R K, et al. The interfacial chemistry of solidification/stabilisation of metals in cement and pozzolanic systems[J]. Waste Management, 1995,15(2):137-48. [63] Hamilton I W, Sammes N M. Encapsulation of steel foundry dusts in cement mortar[J]. Cement and Concrete Research, 1999,29:55-61. [64] Mollah M Y A, Hess T R, Tsai Y N, et al. FTIR and XPS investigations of the effects of carbonation on the solidification/stabilization of cement based system——Portland type V with zinc[J]. Cement and Concrete Research, 1993,23:773-784. [65] 周长林.水泥固化镉(Cd)污染土工程特性研究[D].重庆:重庆大学, 2016. Zhou C L. Study on cement solidification of cadmium (Cd) contaminated soil engineering characteristics[D]. Chongqing:Chongqing University, 2016. [66] 冯亚松,杜延军,周实际,等.活化钢渣在固化稳定化工业重金属污染土中的应用[J].岩土工程学报, 2018,40(S2):112-116. Feng Y S, Du Y J, Zhou S J, et al. Utilization of activated steel slag to solidify/stabilize industrially heavy-metal contaminated soils[J]. Chinese Journal of Geotechnical Engineering, 2018,40(S2):112-116. [67] GB 5085.3-2007危险废物鉴别标准-浸出毒性鉴别[S]. GB 5085.3-2007 Identification standards for hazardous wastes-Identification for extraction toxicity[S]. [68] Paria S, Yuet P K. Solidification-stabilization of organic and inorganic contaminants using portland cement:a literature review[J]. Environmental Reviews, 2006,14(4):217-255. [69] Li W T, Ni P P, YI Y L. Comparison of reactive magnesia, quick lime, and ordinary Portland cement for stabilization/solidification of heavy metal-contaminated soils[J]. Science of the Total Environment, 2019, 671:741-753. [70] Huang X, Zhuang R L, Muhammad F, et al. Solidification/stabilization of chromite ore processing residue using alkali-activated composite cementitious materials[J]. Chemosphere, 2017,168:300-308. [71] Muhammad F, Huang X, Li S, et al. Strength evaluation by using polycarboxylate superplasticizer and solidification efficiency of Cr6+, Pb2+and Cd2+in composite based geopolymer[J]. Journal of cleaner production, 2018,188:807-815. [72] Hidalgo A, Petit S, Domingo C, et al. Microstructural characterization of leaching effects in cement pastes due to neutralisation of their alkaline nature:Part I:Portland cement pastes[J]. Cement and Concrete Research, 2007,37(1):63-70. [73] Wang Y R, Cao Y B, Zhang Z H, et al. Intrinsic sulfuric acid resistance of C-(N)-A-S-H and N-A-S-H gels produced by alkali-activation of synthetic calcium aluminosilicate precursors[J]. Cement and Concrete Research, 2023,165:107068. [74] Rees C A, Provis J L, Lukey G C, et al. In Situ ATR-FTIR Study of the Early Stages of Fly Ash Geopolymer Gel Formation[J]. Langmuir, 2007,23(17):9076-9082. [75] Puligilla S, Monda P. Co-existence of aluminosilicate and calcium silicate gel characterized through selective dissolution and FTIR spectral subtraction[J]. Cement and Concrete Research, 2015,70:39-49. [76] Kupwade-Patil K, Palkovic S D, Bumajdad A, et al. Use of silica fume and natural volcanic ash as a replacement to Portland cement:Micro and pore structural investigation using NMR, XRD, FTIR and X-ray microtomography[J]. Construction and Building Materials, 2018,158:574-590. [77] Jagadisha A, Rao K B, Nayak G, et al. Influence of nano-silica on the microstructural and mechanical properties of high-performance concrete of containing EAF aggregate and processed quarry dust[J]. Construction and Building Materials, 2021,304:124392. [78] Li W T, Yi Y L. Use of carbide slag from acetylene industry for activation of ground granulated blast-furnace slag[J]. Construction and Building Materials, 2020,238:117713. |
|
|
|