|
|
Effect of CO2 on the activity and formation of secondary iron minerals by Acidithiobacillus ferrooxidans |
HUANG Hai-tao1,2, GENG Kang-hui1,3, WU Xian-hui1,3, WANG Chong1,3, WEI Cai-chun1,2 |
1. College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China; 2. Guilin University of Technology, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin 541004, China; 3. Modern Industry College of Ecology and Environmental Protection, Guilin University of Technology, Guilin 541004, China |
|
|
Abstract The effects of 0.03% (CO2 content in air), 3%, 6%, 9% and 12% CO2 concentrations on the activity of Acidithiobacillus ferrooxidans and the formation of secondary iron minerals were studied using shaking flask experiments to simulate the iron-rich and sulfate-rich environment. The pH, Fe2+ oxidation rate and oxidation rate, total Fe precipitation rate and secondary iron mineral phase-related indicators were analysed. The results showed that when the concentration of CO2 was 3%, the ability of bacteria to oxidise Fe2+ was the strongest and the oxidation efficiency of Fe2+ reached 100% at 72h. At the end of the experiment, the total Fe precipitation rate was the highest, at 42.8%. With the increase in CO2 concentration, the activity of A. ferrooxidans in each system was inhibited. The final minerals obtained in different CO2 concentration systems were all jarosite minerals mixed with a small amount of schwertmannite. An appropriate increase in CO2 concentration is therefore helpful to improve the activity of A. ferrooxidans and promote hydrolysis mineralisation, thus increasing mineral yield. This study provides a theoretical basis for the treatment of acid mine wastewater.
|
Received: 20 October 2023
|
|
|
|
|
[1] Acharya B S, Kharel G. Acid mine drainage from coal mining in the United States-An overview[J]. Journal of Hydrology, 2020,588:125061. [2] Colmer A R, Hinkle M E. The role of microorganisms in acid mine drainage:a preliminary report[J]. Science, 1947,106(2751):253-256. [3] Kucera J, Lochman J, Bouchal P, et al. A model of aerobic and anaerobic metabolism of hydrogen in the extremophile Acidithiobacillus ferrooxidans[J]. Frontiers in Microbiology, 2020,11:610836. [4] Li M, Wen J. Recent progress in the application of omics technologies in the study of bio-mining microorganisms from extreme environments[J]. Microbial Cell Factories, 2021,20(1):1-11. [5] Zhang X, Niu J, Liang Y, et al. Metagenome-scale analysis yields insights into the structure and function of microbial communities in a copper bioleaching heap[J]. BMC genetics, 2016,17(1):1-12. [6] Zhang S, Yan L, Xing W, et al. Acidithiobacillus ferrooxidans and its potential application[J]. Extremophiles, 2018,22:563-579. [7] Zhan Y, Yang M, Zhang S, et al. Iron and sulfur oxidation pathways of Acidithiobacillus ferrooxidans[J]. World Journal of Microbiology and Biotechnology, 2019,35:1-12. [8] Yang B, Lin M, Fang J, et al. Combined effects of jarosite and visible light on chalcopyrite dissolution mediated by Acidithiobacillus ferrooxidans[J]. Science of the Total Environment, 2020,698:134175. [9] Feng K, Wang X, Ding B, et al. Acidithiobacillus ferrooxidans mediates morphology evolution of schwertmannite in the presence of Fe2+[J]. Chemical Geology, 2022,598:120828. [10] Baron D, Palmer C D. Solid-solution aqueous-solution reactions between jarosite (KFe3(SO4)2(OH)6) and its chromate analog[J]. Geochimica et Cosmochimica Acta, 2002,66(16):2841-2853. [11] Kirby C S, Thomas H M, Southam, G., Donald, R., 1999. Relative contributions of abiotic and biological factors in Fe (II) oxidation in mine drainage. Appl. Geochem. 14,511-530. [12] Ye Z, Zhou J, Liao P, et al. Metal (Fe, Cu, and As) transformation and association within secondary minerals in neutralized acid mine drainage characterized using X-ray absorption spectroscopy[J]. Applied Geochemistry, 2022,139:105242. [13] Appia-Ayme C, Quatrini R, Denis Y, et al. Microarray and bioinformatic analyses suggest models for carbon metabolism in the autotroph Acidithiobacillus ferrooxidans[J]. Hydrometallurgy, 2006, 83(1-4):273-280. [14] Valdés J, Pedroso I, Quatrini R, et al. Acidithiobacillus ferrooxidans metabolism:from genome sequence to industrial applications[J]. BMC genomics, 2008,9:1-24. [15] 陈智鑫.嗜酸性氧化亚铁硫杆菌亚铁氧化相关基因及其功能的研究[D].山东:山东大学, 2021:3-5. Chen Z X. Study on ferrous oxidation related genes and their functions in Acidithiobacillus ferrooxidans[D]. Shandong:Shandong University, 2021:3-5. [16] 王锐章.嗜酸性氧化亚铁硫杆菌亚铁氧化电子传递链的基础研究[D].山东:山东大学, 2022:3-5. Wang R Z. Basic study on electron transport chain of ferrous oxidation in Acidithiobacillus ferrooxidans[D]. Shandong:Shandong University, 2022:3-5. [17] 王能,张瑞雪,吴攀,等.碳酸盐岩对Fe2+生物氧化及铁矿物合成的影响[J].环境科学学报, 2021,41(9):3555-3562. Wang N, Zhang R X, Wu P et al. The influence of carbonate rocks on Fe2+biological and iron mineral synthesis[J]. Acta Scientiae Circumstantiae, 2021,41(9):3555-3562. [18] Huang H, Geng K, Wang C, et al. Impact of Fulvic Acid and Acidithiobacillus ferrooxidan Inoculum Amount on the Formation of Secondary Iron Minerals[J]. International Journal of Environmental Research and Public Health, 2023,20(6):4736. [19] 李大通,罗雁.中国碳酸盐岩分布面积测量[J].中国岩溶, 1983,(2):61-64. Li D T, Luo Y. Measurement of carbonate rock distribution area in China[J]. Carsologica Sinica, 1983,(2):61-64. [20] Zhang J, Zhou J, Fu L, et al. Karstification of Ordovician carbonate reservoirs in Huanghua depression and its control factors[J]. Carbonates and Evaporites, 2020,35(2):42. [21] Zhong C J, Dao X Y. CO2 source-sink in karst processes in karst areas of China[J]. Episodes Journal of International Geoscience, 1999, 22(1):33-35. [22] Barron J L C, Lueking D R. Growth and maintenance of Thiobacillus ferrooxidans cells[J]. Applied and environmental microbiology, 1990,56(9):2801-2806. [23] Esparza M, Jedlicki E, González C, et al. Effect of CO2 concentration on uptake and assimilation of inorganic carbon in the extreme acidophile Acidithiobacillus ferrooxidans[J]. Frontiers in Microbiology, 2019,10:603. [24] Song Y, Yang L, Wang H, et al. The coupling reaction of Fe2+bio-oxidation and resulting Fe3+hydrolysis drastically improve the formation of iron hydroxysulfate minerals in AMD[J]. Environmental Technology, 2021,42(15):2325-2334. [25] Feng K, Wang X, Zhou B, et al. Hydroxyl, Fe2+, and Acidithiobacillus ferrooxidans jointly determined the crystal growth and morphology of schwertmannite in a sulfate-rich acidic environment[J]. ACS omega, 2021,6(4):3194-3201. [26] 卓文康,苏文瑶,王淡君,等.镉,锰,镍,铅对嗜酸氧化亚铁硫杆菌活性的影响[J].广东化工, 2021,48(10):64-65. Zhuo W K, Su W Y, Wang D J, et al. The Effects on the activity of Acidithiobacillus ferrooxidans of Cd, Mn, Ni, Pb[J]. Guangdong Chemical Industry, 2021,48(10):64-65. [27] Bao Y, Lai J, Wang Y, et al. Effect of fulvic acid co-precipitation on biosynthesis of Fe (III) hydroxysulfate and its adsorption of lead[J]. Environmental Pollution, 2022,295:118669. [28] Yan S, Zhan L, Meng X, et al. Role of schwertmannite or jarosite in photocatalytic degradation of sulfamethoxazole in ultraviolet/peroxydisulfate system[J]. Separation and Purification Technology, 2021,274:118991. [29] Wang H M, Bigham J M, Tuovinen O H. Formation of schwertmannite and its transformation to jarosite in the presence of acidophilic iron-oxidizing microorganisms[J]. Materials Science and Engineering C, 2006,26(4):588-592. [30] Eskandarpour A, Onyango M S, Ochieng A, et al. Removal of fluoride ions from aqueous solution at low pH using schwertmannite[J]. Journal of Hazardous Materials, 2008,152(2):571-519. [31] Lu B, Qiao L, Wang J, et al. Experimental study on the influence of pyrite oxidation products on coal spontaneous combustion[J]. International Journal of Coal Preparation and Utilization, 2022,42(9):2581-2596. [32] 周顺桂,周立祥,陈福星.施氏矿物Schwertmannite的微生物法合成,鉴定及其对重金属的吸附性能[J].光谱学与光谱分析, 2007,(2):367-370. Zhou S G, Zhou Li X, Chen F X. Characterization and heavy metal adsorption properties of Schwertmannite synthesized by bacterial oxidation of ferrous sulfate solutions[J]. Spectroscopy and Spectral Analysis, 2007,(2):367-370. [33] Esparza M, Cárdenas J P, Bowien B, et al. Genes and pathways for CO2 fixation in the obligate, chemolithoautotrophic acidophile, Acidithiobacillus ferrooxidans, carbon fixation in A. ferrooxidans[J]. BMC microbiology, 2010,10:1-15. [34] Lazaroff N, Melanson L, Lewis E, et al. Scanning electron microscopy and infrared spectroscopy of iron sediments formed by Thiobacillus ferrooxidans[J]. Geomicrobiology Journal, 1985,4(3):231-268. [35] Jung H, Inaba Y, Banta S. Genetic engineering of the acidophilic chemolithoautotroph Acidithiobacillus ferrooxidans[J]. Trends in Biotechnology, 2022,40(6):677-692. [36] Yi Q, Wu S, Southam G, et al. Acidophilic iron-and sulfur-oxidizing bacteria, Acidithiobacillus ferrooxidans, drives alkaline pH neutralization and mineral weathering in Fe ore tailings[J]. Environmental science&technology, 2021,55(12):8020-8034. |
|
|
|