|
|
Analysis of characteristics and cause of ozone pollution in Guangzhou in 2022 |
HUANG Ji-zhang1, GAO Jian2, YU Mei-fang1, GAO Rui2, PEI Cheng-lei3, YANG Su-xia1, ZHANG Jin-pu3,4, SONG Wei4, LI lei5, LI Yin-song6, GUO Hao4, YE Zi-ming1 |
1. Guangzhou Research Institute of Environment Protection Co., Ltd., Guangzhou 510620, China; 2. Chinese Research Academy of Environmental Sciences, Beijing 100012, China; 3. Guangzhou Sub-branch of Guangdong Ecological and Environmental Monitoring Center, Guangzhou 510006, China; 4. Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510630, China; 5. School of Atmospheric Sciences, Sun Yat-sen University, Zhuhai 519082, China; 6. Guangzhou Hexin Instrument Co., Ltd, Guangzhou 510535, China |
|
|
Abstract In this study, observational data of O3 and its precursors, meteorological observations, and ERA5reanalysis data for 2022 were selected to analyze the characteristics of O3 pollution in Guangzhou. Utilizing both Observation-Based Modeling (OBM) and backward trajectory models, we identified O3 generation sensitivity control zones and key sensitive species, and conducted an analysis of O3 pollution causes from three aspects: O3 precursor emissions, meteorological conditions, and regional transport. The results indicate that: O3 generation in Guangzhou is primarily controlled by volatile organic compounds (VOCs) and NOx-VOCs synergy, with the current VOCs to NOx emission reduction ratio not being less than 1:1. O3 generation is most sensitive to oxygen-containing VOCs, followed by biogenic VOCs (BVOCs), alkenes, aromatics, and alkanes. Despite a 14.7% decrease in NOx and a 30.4% decrease in VOC concentrations in 2022, the effectiveness of local emission reduction in Guangzhou was offset by adverse meteorological conditions such as the strong subtropical high, frequent influences of peripheral circulation from typhoons, and unfavorable meteorological conditions such as enhanced radiation, high temperature, and low humidity, along with regional transport, leading to an increase in O3 concentrations. During typical O3 pollution events (September 16~22, 2022), airflow trajectories shifted from northwest and southwest directions to east and southeast directions, making it susceptible to regional transport from surrounding urban areas. Recommendations for future actions include continued efforts to reduce NOx emissions, promoting a shift in O3 sensitivity from NOx-sensitive to NOx-insensitive, and actively building regional joint prevention and control mechanisms to reduce regional transport contributions.
|
Received: 07 October 2023
|
|
|
|
|
[1] Li K, Jacob D, Shen L, et al. Increases in surface ozone pollution in China from 2013 to 2019:anthropogenic and meteorological influences[J]. Atmospheric Chemistry and Physics, 2020,20(19):11423-11433. [2] Lu X, Hong J, Zhang L, et al. Severe Surface Ozone Pollution in China:A Global Perspective[J]. Environmental Science&Technology Letters, 2018,5(8):487-494. [3] Lu X, Zhang L, Wang X, et al. Rapid increases in warm-season surface ozone and resulting health impact in China since 2013[J]. Environmental Science&Technology Letters, 2020,7(4):240-247. [4] Li K, Jacob D, Liao H, et al. Anthropogenic drivers of 2013~2017 trends in summer surface ozone in China[J]. Proceedings of the National Academy of Sciences, 2019,116(2):422-427. [5] 胡忠玲.我国臭氧污染逐年加剧[J].生态经济, 2020,36(9):5-8. Hu Z L. China's ozone pollution is worsening year by year[J]. Ecological Economy, 2020,36(9):5-8. [6] Tang G, Liu S, Zhang J, et al. Bypassing the NOx titration trap in ozone pollution control in Beijing[J]. Atmospheric Research, 2020,249(10):105333. [7] Canella R, Borriello R, Carlotta C, et al. Tropospheric ozone effects on chlorine current in lung epithelial cells:an electrophysiological approach[J]. Free Radical Biology and Medicine:The Official Journal of the Oxygen Society, 2016,96:S58-S59. [8] Avnery S, Mauzerall D L, Liu J, et al. Global crop yield reductions due to surface ozone exposure:1. year 2000 crop production losses, economic damage, and implications for world hunger[J]. Atmospheric Environment, 2011,45(13):2284-2296. [9] Dingenen R V, Dentener F J, Raes F, et al. The global impact of ozone on agricultural crop yields under current and future air quality legislation[J]. Atmospheric Environment, 2009,43(3):604-618. [10] Krupa S, McGrath M T, Andersen C P, et al. Ambient ozone and plant health[J]. Plant Dis, 2001,85:4-12. [11] Zhao Z, Feng, E Z, Wang X K, et al. Ground-level O3 pollution and its impacts on food crops in China:A review[J]. Environmental Pollution, 2015,199:42-48. [12] Liu T, Hong Y, Li M, et al. Atmospheric oxidation capacity and ozone pollution mechanism in a coastal city of southeastern China:Analysis of a typical photochemical episode by an observation-based model[J]. Atmospheric Chemistry and Physics, 2022,22(3):2173-2190. [13] Wang T, Xue L, Brimblecombe P, et al. Ozone pollution in China:A review of concentrations, meteorological influences, chemical precursors, and effects[J]. Science of The Total Environment, 2017,575:1582-1596. [14] 周炎,陈多宏,林玉君,等.广东省春季一次区域臭氧污染过程的成因分析[J].环境科学学报, 2023,43(1):10. Zhou Y, Chen D, Lin Y, et al. Analysis of an ozone pollution process in spring in Guangdong Province[J]. Acta Scientiae Circumstantiae, 2023,43(1):10. [15] Sillman S, The relation between ozone, NOx and hydrocarbons in urban and polluted rural environments[J]. Pergamon, 1999,33(12):1821-1845. [16] Xing J, Wang S, Jang C, et al. Nonlinear response of ozone to precursor emission changes in China:A modeling study using response surface methodology[J]. Atmospheric Chemistry and Physics, 2011,11:5027-5044. [17] Zhao M, Zhang Y, Pei C, et al. Worsening ozone air pollution with reduced NO and VOCs in the Pearl River Delta region in autumn 2019:Implications for national control policy in China[J]. Journal of Environmental Management, 2022,324:116327. [18] 伍永康,陈伟华,颜丰华,等.不同传输通道下珠江三角洲臭氧与前体物非线性响应关系[J].环境科学, 2022,43(1):160-169. Wu Y K, Chen W H, Yan F H, et al. Nonlinear response relationship between ozone and precursor emissions in the Pearl River Delta region under different transmission channels[J]. Environmental Science, 2022,43(1):160-169. [19] Shao M, Zhang Y, Zeng L, et al. Ground-level ozone in the Pearl River Delta and the roles of VOC and NOx in its production[J]. Journal of Environmental Management, 2009,90(1):512-518. [20] Tan Z, Lu K, Dong H, et al. Explicit diagnosis of the local ozone production rate and the ozone-NOx-VOC sensitivities[J]. Science Bulletin, 2018,63(16):1067-1076. [21] 赵敏,申恒青,陈天舒,等.黄河三角洲典型城市夏季臭氧污染特征与敏感性分析[J].环境科学研究, 2022,35(6):1351-1361. Zhao M, Shen H Q, Chen T S, et al. Characteristics and sensitivity analysis of ozone in the representative city of the Yellow River Delta in summer[J]. Research of Environmental Sciences, 2022,35(6):1351-1361. [22] 高东峰,张远航,曹永强.应用OBM模型研究广州臭氧的生成过程[J].环境科学研究, 2007,20(1):47-51. Gao D F, Zhang Y H, Cao Y Q. Process analysis of ozone formation in Guangzhou:application of observation-based model[J]. Research of Environmental Science, 2007,20(1):47-51. [23] 邹旭东,杨洪斌,张云海,等.1951~2012年沈阳市气象条件变化及其与空气污染的关系分析[J].生态环境学报, 2015,24(1):76-83. Zou X D, Yang H B, Zhang Y H, et al. Changes of meteorological factors in Shenyang city during 1951~2012 and its relationship with air pollution[J]. Ecology and Environmental Science, 2015,24(1):76-83. [24] Chen Y, Zhu Y, Lin C, et al. Response surface model based emission source contribution and meteorological pattern analysis in ozone polluted days[J]. Environmental Pollution, 2022,307:119459. [25] 余钟奇,马井会,毛卓成,等.2017年上海臭氧污染气象条件分析及臭氧污染天气分型研究[J].气象与环境学报, 2019,35(6):46-54. Yu Z Q, Ma J H, Mao Z C, et al. Study on the meteorological conditions and synoptic classifications of O3 pollution in Shanghai in 2017[J]. Journal of Meteorology and Environment, 2019,35(6):46-54. [26] 张莹,许建敏,汪瑶,等.京津冀地区2015~2020年臭氧持续污染事件特征、气象影响及潜在源区分析[J].中国环境科学, 2023, 43(6):2714-2721. Zhang Y, Xu J M, Wang Y, et al. Characteristics, meteorological impacts and potential sources of persistent ozone pollution events in Beijing-Tianjin-Hebei Region during 2015~2020[J]. China Environmental Science, 2023,43(6):2714-2721. [27] 陈婉莹,陈懿昂,褚旸晰,等.珠三角地区臭氧来源特征的数值模拟研究[J].环境科学学报, 2022,42(3):293-308. Chen W Y, Chen Y A, Chu Y X, et al. Numerical simulation of ozone source characteristics in the Pearl River Delta region[J]. Acta Scientiae Circumstantiae, 2022,42(3):293-308. [28] 宋梦迪,冯淼,李歆,等.成都市臭氧重污染成因与来源解析[J].中国环境科学, 2022,42(3):1057-1065. Song M D, Feng M, Li X, et al. Causes and sources of heavy ozone pollution in Chengdu[J]. China Environmental Science, 2022,42(3):1057-1065. [29] 樊文雁,蔡子颖,姚青,等.区域输送对天津臭氧污染的影响[J].中国环境科学, 2022,42(11):4991-4999. Fan W Y, Cai Z Y, Yao Q, et al. Effect of regional transport on ozone pollution in Tianjin[J]. China Environmental Science, 2022,42(11):4991-4999. [30] 陈漾,张金谱,邱晓暖,等.2021年广州市臭氧污染特征及气象因子影响分析[J].生态环境学报, 2022,31(10):2028-2038. Chen Y, Zhang J P, Qiu X N, et al. Characteristic of ozone pollution and meteorological factors analysis in Guangzhou in 2021[J]. Ecology and Environmental Sciences, 2022,31(10):2028-2038. [31] 雷蕾,张金谱,裴成磊.广州市一次秋季典型臭氧污染过程分析[J].智能城市, 2021,7(20):111-112. Lei L, Zhang J P, Pei C L. Analysis of a typical ozone pollution process in Guangzhou in autumn[J]. Intelligent City, 2021,7(20):111-112. [32] 裴成磊,谢雨彤,陈希,等.广州市冬季一次典型臭氧污染过程分析[J].环境科学, 2022,43(10):4305-4315. Pei C L, Xie Y T, Chen X, et al. Analysis of a typical ozone pollution process in Guangzhou in winter[J]. Environmental Science, 2022, 43(10):4305-4315. [33] 张金谱,裴成磊,陈彦宁,等.基于垂直观测数据融合的广州市臭氧污染过程分析[J].环境科学学报, 2023,43(1):171-180. Zhang J P, Pei C L, Chen Y N, et al. Analysis of ozone episodes in Guangzhou based on vertical observation data fusion[J]. Acta Scientiae Circumstantiae, 2023,43(1):171-180. [34] 裴成磊,牟江山,张英南,等.广州市臭氧污染溯源:基于拉格朗日光化学轨迹模型的案例分析[J].环境科学, 2021,42(4):1615-1625. Pei C L, Mu J S, Zhang Y N, et al. Source apportionment of ozone pollution in Guangzhou:Case application of Lagrangian Photochemical Trajectory Model[J]. Environmental Science, 2024, 42(4):1615-1625. [35] 罗玮,王伯光,刘舒乐,等.广州大气挥发性有机物的臭氧生成潜势及来源研究[J].环境科学与技术, 2011,34(5):80-86. Luo W, Wang B G, Liu S L, et al. VOC ozone formation potential and emission sources in the atmosphere of Guangzhou[J]. Environmental Science&Technology, 2011,34(5):80-86. [36] HJ 633-2012环境空气质量指数(AQI)技术规定(试行)[S]. HJ633-2012 Technical regulation on ambient air quality index (ontrial)[S]. [37] GB 3095-2012环境空气质量标准[S]. GB 3095-2012 Ambient air quality standards[S]. [38] An J, Zhu B, Wang H, et al. Characteristics and source apportionment of VOCs measured in an industrial area of Nanjing, Yangtze River Delta, China[J]. Atmospheric Environment, 2014,97:206-214. [39] Wei W, Cheng S, Li G, et al. Characteristics of volatile organic compounds (VOCs) emitted from a petroleum refinery in Beijing, China[J]. Atmospheric Environment, 2014,98:358-366. [40] Zhang Y, Wang X, Zhang Z, et al. Sources of C2-C4alkenes, the most important ozone nonmethane hydrocarbon precursors in the Pearl River Delta region[J]. Science of The Total Environment, 2015,502:236-245. [41] Louie P K K, Ho J W K, Tsang R C W, et al. VOCs and OVOCs distribution and control policy implications in Pearl River Delta region, China[J]. Atmospheric Environment, 2013,76:125-135. [42] Edwards P M, Brown S S, Roberts J M, et al. High winter ozone pollution from carbonyl photolysis in an oil and gas basin[J]. Nature, 2014,514:351. [43] Tan Z, Lu K, Jiang M, et al. Exploring ozone pollution in Chengdu, southwestern China:A case study from radical chemistry to O3-VOC-NOx sensitivity[J]. Science of The Total Environment, 2018,636:775-786. |
|
|
|