|
|
Comparative analysis of sludge dewatering technology from research progress and carbon emission |
LI Li-ping1, YAN Bei-bei1, WANG Zhi1, SUN Yu-nan2, LI Ning1, TAO Jun-yu2, WANG Yuan1, CHEN Guan-yi1,2 |
1. School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; 2. School of Mechanical Engineering, Tianjin University of Commerce, Tianjin 300134, China |
|
|
Abstract In this study, the principles and characteristics of several conventional sludge dewatering technologies (sludge thickening, mechanical dewatering and deep dewatering), and several emerging deep dewatering technologies with low-energy (low-temperature drying, biological drying and supercritical CO2 dewatering), were reviewed. Meanwhile, the carbon emissions of different technologies were analyzed in comparison. The results showed that the conventional dewatering technology exhibited the advantages of relative maturity and wide application, but there were problems, such as high energy consumption, high chemicals consumption and high carbon emission, that is, "three high" problem. Among above technologies, the carbon emission from thermal drying technology was the most significant (2070.21kg CO2/t DS), and more than 75% of carbon emissions were attributed to the use of chemicals in mechanical dewatering and pretreatment dewatering processes. Superior carbon reduction potential was showed in the emerging technologies, which were 32.67 (solar drying), 1074.36 (heat pump drying), 58.78 (biological drying) and 490.16 (supercritical CO2 dewatering) kg CO2/ t DS, respectively. They will be promising alternatives for conventional sludge dewatering technologies through optimization of process parameters and reduction of operating costs. The results of this study can provide important reference and foundation for the development and selection of low-carbon sludge dewatering technology.
|
Received: 13 October 2023
|
|
|
|
|
[1] 中华人民共和国住房和城乡建设部.中国城乡建设统计年鉴-2022[EB/OL]. https://www.mohurd.gov.cn/gongkai/fdzdgknr/sjfb/tjxx/2023-10-13/2023-10-13. MOHURD. China Urban Construction Statistical Yearbook-2022[EB/OL]. https://www.mohurd.gov.cn/gongkai/fdzdgknr/sjfb/tjxx/2023-10-13/2023-10-13. [2] 常纪文,井媛媛,耿瑜,等.推进市政污水处理行业低碳转型,助力碳达峰、碳中和[J].中国环保产业, 2021,(6):9-17. Chang J W, Jing Y Y, Geng Y, et al. Promote the low-carbon transformation of municipal sewage treatment industry and facilitate the realization of emission peak and carbon neutrality[J]. China environmental protection industry, 2021,(6):9-17. [3] Zhao G, Liu W, Xu J, et al. Greenhouse gas emission mitigation of large-scale wastewater treatment plants (WWTPs):Optimization of sludge treatment and disposal[J]. Polish Journal of Environmental Studies, 2020,30(1):955-964. [4] Wei L, Zhu F, Li Q, et al. Development, current state and future trends of sludge management in China:Based on exploratory data and CO2-equivaient emissions analysis[J]. Environment International, 2020,144:106093. [5] GB/T 23485-2009城镇污水处理厂污泥处置混合填埋用泥质[S]. GB/T 23485-2009 The disposal of sludge from municipal wastewater treatment plant-Quality of sludge for co-landfilling[S]. [6] CJ/T309-2009城镇污水处理厂污泥处置农用泥质[S]. CJ/T309-2009 The disposal of sludge from municipal wastewater treatment plant-Control standards for agricultural use[S]. [7] GB/T 24602-2009城镇污水处理厂污泥处置单独焚烧用泥质[S]. GB/T 24602-2009 Disposal of sludge from municipal wastewater treatment plant-Quality of sludge used in separate incineration[S]. [8] GB/T 25031-2010城镇污水处理厂污泥处置制砖用泥质[S]. GB/T 25031-2010 Disposal of sludge from municipal wastewater treatment plant-Quality of sludge used in making brick[S]. [9] Zhang X, Ye P, Wu Y. Enhanced technology for sewage sludge advanced dewatering from an engineering practice perspective:A review[J]. Journal of Environmental Management, 2022,321:115938. [10] Christensen M L, Keiding K, Nielsen P H, et al. Dewatering in biological wastewater treatment:a review[J]. Water Research, 2015, 82(3):14-24. [11] 林文聪,赵刚,刘伟,等.污水厂污泥典型处理处置工艺碳排放核算研究[J].环境工程, 2017,35(7):175-179. Lin W C, Zhao G, Liu W, et al. Study on carbon emission accounting for typical processes of sewage sludge treatment and disposal[J]. Environmental Engineering, 2017,35(7):175-179. [12] Zhao G, Manel G B, Samuel R, et al. Comparative energy and carbon footprint analysis of biosolids management strategies in water resource recovery facilities[J]. Science of the Total Environment, 2019,665:762-773. [13] 赵刚,唐建国,徐竟成,等.中美典型污泥处理处置工程能耗和碳排放比较分析[J].环境工程, 2022,40(12):9-16. Zhao G, Tang J G, Xu J C, et al. Comparative energy and carbon emission analysis of typical sludge treatment projects in China and the US[J]. Environmental Engineering, 2022,40(12):9-16. [14] 李哲坤,张立秋,杜子文,等.城市污泥不同处理处置工艺路线碳排放比较[J].环境科学, 2023,44(2):1181-1190. Li Z K, Zhang L Q, Du Z W, et al. Comparison of carbon emissions in different treatment and disposal process routes of municipal Sludge[J]. Environmental Science, 2023,44(2):1181-1190. [15] 马鉴云,李智,顾俊,等.污泥预调理方式影响下的市政污泥"深度脱水-干化-焚烧"碳排放研究[J].中国环境科学, 2023,43(12):6651-6656. Ma J Y, Li Z, Gu J, et al. Carbon emissions of municipal sludge"deep dehydration-drying-incineration"processes under different sludge preconditioning methods[J]. China Environmental Science, 2023,43(12):6651-6656. [16] 潘煜,李廉明,宋焜,等.基于化石碳的污泥干化焚烧处置碳排放分析[J].环境工程学报, 2023,17(3):990-1000. Pan Y, Li L M, Song K, et al. Analysis on carbon emissions of sludge drying and incineration treatment based on fossil carbon[J]. Chinese Journal of Environmental Engineering, 2023,17(3):990-1000. [17] 王琳,李德彬,刘子为,等.污泥处理处置路径碳排放分析[J].中国环境科学, 2022,42(5):2404-2412. Wang L, Li D B, Liu Z W, et al. Analysis on carbon emission from sludge treatment and disposal[J]. China Environmental Science, 2022,42(5):2404-2412. [18] 李爱民,李羽志,宋联,等.无锡市典型污泥处理处置全过程碳排放特征研究[J].给水排水, 2022,48(11):28-34. Li A M, Li Y Z, Song L, et al. Carbon emission characteristics of typical sludge treatment and disposal process in Wuxi[J]. Water&Wastewater Engineering, 2022,48(11):28-34. [19] Pan Y, Li P, Song K, et al. New model for evaluating greenhouse gas emissions from sludge treatment based on fossil and biogenic carbon migration[J]. Journal of Cleaner Production, 2023,425:138845. [20] Yang H, Guo Y, Fang N, et al. Life cycle assessment of greenhouse gas emissions of typical sewage sludge incineration treatment route based on two case studies in China[J]. Environmental Research, 2023,231:115959. [21] Wu B, Dai X, Chai X. Critical review on dewatering of sewage sludge:Influential mechanism, conditioning technologies and implications to sludge reutilizations[J]. Water Research, 2020,180:115912. [22] Cao B, Zhang T, Zhang W, et al. Enhanced technology based for sewage sludge deep dewatering:A critical review[J]. Water Research, 2021,189:116650. [23] 戈拯,张义鑫,刘吉宝,等.改性骨架材料应用于污泥深度脱水的研究进展[J].中国环境科学, 2023,43(11):5787-5799. Ge Z, Zhang Y X, Liu J B, et al. Research progress on the application of modified skeletal materials for sludge deep dewatering[J]. China Environmental Science, 2023,43(11):5787-5799. [24] 姚杰.污泥深度脱水关键技术研究及应用[J].中国给水排水, 2013,29(23):153-157. Yao J. Study and application of key technology for advanced sludge dewatering[J]. China Water&Wastewater, 2013,29(23):153-157. [25] 陈丹丹,窦昱昊,卢平,等.污泥深度脱水技术研究进展[J].化工进展, 2019,38(10):4722-4746. Chen D D, Dou Y H, Lu P, et al. A review on sludge deep dewatering technology[J]. Chemical Industry and Engineering Progress, 2019,38(10):4722-4746. [26] 高久珺.城市水污染控制与治理技术[M].郑州:黄河水利出版社, 2020:159-163. Gao J J. Urban water pollution control and treatment technology[M]. Zhengzhou:Yellow River Water Conservancy Press, 2020:159-163. [27] 马德刚,刘庆岭,于晓艳.污泥电渗透脱水技术[M].天津:天津大学出版社, 2020:6-8. Ma D G, Liu Q L, Yu X Y. Sludge electroosmotic dewatering technology[M]. Tianjin:Tianjin University Press, 2020:6-8. [28] 谭学军,王磊.我国重点流域典型污水厂污泥处理处置方式调研与分析[J].中国给水排水, 2022,38(14):1-8. Tan X J, Wang L. Investigation and analysis on the treatment and disposal methods of typical sewage treatment plant sludge in China's key river basins[J]. China Water&Wastewater, 2022,38(14):1-8. [29] 雍毅,吴香尧.市政污泥特性与再生利用引论[M].北京:中国环境出版社, 2016:10-11. Yong Y, Wu X Y. Introduction to municipal sludge characteristics and recycling[M]. Beijing:China Environment Press, 2016:10-11. [30] 何志健,贝德光,许谦,等.污泥生物沥浸深度脱水工艺用于污水厂提标扩建[J].中国给水排水, 2023,39(4):112-117. He Z J, Bei D G, Xu Q, et al. Application of sludge bioleaching deep dehydration in upgrading and expansion of a WWTP[J]. China Water&Wastewater, 2023,39(4):112-117. [31] 陈东杰,夏霆,张旭,等.城市污泥脱水预处理技术研究进展[J].南京工业大学学报(自然科学版), 2023,45(1):12-23. Chen D J, Xia T, Zhang X, et al. Advances in municipal sludge dewatering pretreatment techology[J]. Journal of Nanjing Tech University (Natural Science Edition), 2023,45(1):12-23. [32] Tony M A, Zhao Y Q, Fu J F, et al. Conditioning of aluminium-based water treatment sludge with Fenton's reagent:effectiveness and optimising study to improve dewaterability[J]. Chemosphere, 2008, 72(4):673-677. [33] Neyens E, Baeyens J, Weemaes M, et al. Pilot-scale peroxidation (H2O2) of sewage sludge[J]. Journal of Hazardous materials, 2003, 98(1-3):91-106. [34] Lu M, Lin C, Liao C, et al. Dewatering of activated sludge by Fenton's reagent[J]. Advances in Environmental Research, 2003,7(3):667-670. [35] Yu W, Yang J, Shi Y, et al. Roles of iron species and pH optimization on sewage sludge conditioning with Fenton's reagent and lime[J]. Water Research, 2016,95:124-133. [36] Ruan S, Deng J, Cai A, et al. Improving dewaterability of waste activated sludge by thermally-activated persulfate oxidation at mild temperature[J]. Journal of Environmental Management, 2021,281(47):111899. [37] 叶新合,刘军伟,策红军,等.物理调理法改善污泥脱水性能研究进展[J].工业水处理, 2022,42(8):51-59. Ye X H, Liu J W, Ce H J, et al. Research progress in the improvement of sludge dewatering by physical conditioning[J]. Industrial Water Treatment, 2022,42(8):51-59. [38] 陈彦秀,李刚.市政污泥脱水技术研究进展[J].环境科学与技术, 2021,44(S1):308-311. Chen Y X, Li G. Research progress of municipal sludge dewatering technology[J]. Environmental Science&Technology, 2021,44(S1):308-311. [39] 吴建,唐维学,潘湛昌,等.微波-超声波对铝加工污泥的脱水性能研究[J].工业水处理, 2020,40(5):49-51. Wu J, Tang W X, Pan Z C, et al. Study on microwave-ultrasonic dewatering performance of aluminum processing sludge[J]. Industrial Water Treatment, 2020,40(5):49-51. [40] 宋永伟,马莹莹,王蕊,等.石英砂提高城市污泥生物沥浸效率主导因素分析[J].中国环境科学, 2021,41(5):2283-2289. Song Y W, Ma Y Y, Wang R, et al. The analysis of dominant factors in enhancing municipal sludge bioleaching efficiency by quartz sand[J]. China Environmental Science, 2021,41(5):2283-2289. [41] Neyens E, Baeyens J, Weemaes M, et al. Hot acid hydrolysis as a potential treatment of thickened sewage sludge[J]. Journal of Hazardous materials, 2003,98(1-3):275-293. [42] Ruiz-Hernando M, Martinez-Elorza G, Labanda J, et al. Dewaterability of sewage sludge by ultrasonic, thermal and chemical treatments[J]. Chemical Engineering Journal, 2013,230:102-110. [43] Xiao K, Chen Y, Jiang X, et al. Characterization of key organic compounds affecting sludge dewaterability during ultrasonication and acidification treatments[J]. Water Research, 2016,105:470-478. [44] 郝晓地,申展,李季,等.剩余污泥低温干化热源首选污水厂出水余温热能[J].中国给水排水, 2023,39(6):1-8. Hao X D, Shen Z, Li J, et al. Low-temperature sludge drying:priority to thermal energy in effluent[J]. China Water&Wastewater, 2023, 39(6):1-8. [45] 钱柯贞,陈德珍,段妮娜,等.城市污水污泥干化-焚烧系统热力分析[J].热力发电, 2022,51(5):48-54. Qian K Z, Chen D Z, Duan N N, et al. Thermal analysis of municipal sewage sludge drying-incineration system[J]. Thermal Power Generation, 2022,51(5):48-54. [46] Rao B, Wang G, Xu P. Recent advances in sludge dewatering and drying technology[J]. Drying Technology, 2022,40(15):3049-3063. [47] 李润东,张万里,孙洋,等.污泥热干化技术适应性分析及未来发展趋势[J].可再生能源, 2012,30(5):95-99. Li R D, Zhang W L, Sun Y, et al. Adaptability analysis and future development trend of sludge thermal drying technology[J]. Renewable Energy Resources, 2012,30(5):95-99. [48] 王兴润,金宜英,聂永丰.国内外污泥热干燥工艺的应用进展及技术要点[J].中国给水排水, 2007,23(8):5-8. Wang X R, Jin Y Y, Nie Y F. Application progress and technical mains of thermal sludge drying processes at home and abroad[J]. China Water&Wastewater, 2007,23(8):5-8. [49] 吴青荣,张绪坤,王高敏.城市污泥低温干化技术研究进展[J].环境工程, 2017,35(3):127-131. Wu Q R, Zhang X K, Wang G M. Advances on low temperature drying technology of municipal sewage sludge[J]. Environmental Engineering, 2017,35(3):127-131. [50] 戴晓虎,张辰,章林伟,等.碳中和背景下污泥处理处置与资源化发展方向思考[J].给水排水, 2021,57(3):1-5. Dai X H, Zhang C, Zhang L W, et al. Thoughts on the development direction of sludge treatment and resource recovery under the background of carbon neutrality[J]. Water&Wastewater Engineering, 2021,57(3):1-5. [51] Lyes B, Patricia A, Angelique L. Review on fundamental aspect of application of drying process to wastewater sludge[J]. Renewable and Sustainable Energy Reviews, 2013,28:29-43. [52] Bennamoun L. Solar drying of wastewater sludge:A review[J]. Renewable and Sustainable Energy Reviews in Analytical Chemistry, 2012,16(1):1061-1073. [53] 徐强.污泥处理处置新技术,新工艺,新设备[M].北京:化学工业出版社, 2011:109-113. Xu Q. New technology, process and equipment of sludge treatment and disposal[M]. Beijing:Chemical Industry Press, 2011:109-113. [54] Kocbek E, Garcia H A, Hooijmans C M, et al. Microwave treatment of municipal sewage sludge:Evaluation of the drying performance and energy demand of a pilot-scale microwave drying system[J]. Science of the Total Environment, 2020,742:140541. [55] 王首都.集约化低温真空干化技术在嘉定某污水处理厂的应用[J].中国给水排水, 2019,35(22):91-95. Wang S D. Application of intensive low-temperature vacuum dewatering and drying technology in a sewage treatment plant in Jiading[J]. China Water&Wastewater, 2019,35(22):91-95. [56] 李亮,史慧婷.污泥低温真空脱水干化工艺的工程应用[J].中国给水排水, 2017,33(12):71-74. Li L, Shi H T. Application of sludge dewatering by low-temperature vacuum dewatering technology[J]. China Water&Wastewater, 2017, 33(12):71-74. [57] 许太明,孙洪娟,曲献伟,等.污泥低温真空脱水干化成套技术[J].中国给水排水, 2013,29(2):106-108. Xu T M, Sun H J, Qu X W, et al. Sludge low-temperature vacuum drying system[J]. China Water&Wastewater, 2013,29(2):106-108. [58] 肖红伟,张世湘,白竣文,等.杏子的气体射流冲击干燥特性[J].农业工程学报, 2010,26(7):318-323. Xiao H W, Zhang S X, Bai J W, et al. Air impingement drying characteristics of apricot[J]. Transactions of the CSAE, 2010,26(7):318-323. [59] 郭松林,陈同斌,高定,等.城市污泥生物干化的研究进展与展望[J].中国给水排水, 2010,26(15):102-105. Guo S L, Chen T B, Gao D, et al. Research progress and prospect of sewage sludge biodrying[J]. China Water&Wastewater, 2010,26(15):102-105. [60] 陈俊,黄慧明,魏本平,等.污泥生物干化工艺脱水过程及其能耗分析[J].中国给水排水, 2016,32(23):130-134. Chen J, Huang H M, Wei B P, et al. Analysis on dewatering process and energy consumption in sewage sludge bio-drying process[J]. China Water&Wastewater, 2016,32(23):130-134. [61] 金熠,陈越,刘树根,等.剩余污泥生物干化处理及产物土地利用潜力[J].环境工程学报, 2023,17(5):1570-1579. Jin Y, Chen Y, Liu S G, et al. The treatment of biological drying for dewatered excess sludge and the potential of land utilization for the products[J]. Chinese Journal of Environmental Engineering, 2023, 17(5):1570-1579. [62] Aggarwal S, Hakovirta M. Supercritical carbon dioxide drying of municipal sewage sludge-Novel waste-to-energy valorization pathway[J]. Journal of Environmental Management, 2021,285:112148. [63] Asafu-Adjaye O, Via B, Sastri B, et al. Displacement dewatering of sludge with supercritical CO2[J]. Water Research, 2021,190:116764. [64] Zhuang H, Guan J, Leu S Y, et al. Carbon footprint analysis of chemical enhanced primary treatment and sludge incineration for sewage treatment in Hong Kong[J]. Journal of Cleaner Production, 2020,272:122630. [65] 中华人民共和国生态环境部.2019年度减排项目中国区域电网基准线排放因子[EB/OL]. https://www.mee.gov.cn/ywgz/ydqhbh/wsqtkz/202012/t20201229_815386.shtml2020-12-29/2023-07-01. Ministry of Ecology&Environment China. 2019 Emission Factor of China regional power grid base line.[EB/OL]. https://www.mee.gov.cn/ywgz/ydqhbh/wsqtkz/202012/t20201229_815386.shtml 2020-12-29/2023-07-01. [66] 郝晓地,张益宁,李季,等.污水处理能源中和与碳中和案例分析[J].中国给水排水, 2021,37(20):1-8. Hao X D, Zhang Y N, Li J, et al. Case analysis of energy neutrality and carbon neutrality for wastewater treatment[J]. China Water&Wastewater, 2021,37(20):1-8. [67] 詹咏,黄嘉良,罗伟,等.上海市试点小区湿垃圾源头减量前后垃圾处理处置全链条碳足迹分析[J].环境工程学报, 2020,14(4):1075-1083. Zhan Y, Huang J L, Luo W, et al. Full chain carbon footprint analysis of garbage disposal process before and after food waste in-situ reduction treatment in Shanghai pilot communities[J]. Chinese Journal of Environmental Engineering, 2020,14(4):1075-1083. [68] 张岳,葛铜岗,孙永利,等.基于城镇污水处理全流程环节的碳排放模型研究[J].中国给水排水, 2021,31(9):65-74. Zhang Y, Ge T G, Sun Y L, et al. Research on carbon emission model based on the whole process of urban sewage treatment[J]. China Water&Wastewater, 2021,31(9):65-74. [69] 蒋玲燕.上海某污水处理厂污泥深度脱水运行优化探索[J].给水排水, 2019,55(9):25-28. Jiang L Y. Optimization of sludge advanced dewatering system for a wastewater treatment plant in Shanghai[J]. Water&Wastewater Engineering, 2019,55(9):25-28. [70] 傅伟良,张城镇,张绪坤,等.污泥热泵低温干化技术优势与问题探讨[J].环境工程, 2021,39(2):121-124. Fu W L, Zhang C Z, Zhang X K, et al. Discussion on the existing problems and advantages of heat pump low temperature drying of sludge[J]. Environmental Engineering, 2021,39(2):121-124. [71] 郝晓地,陈奇,李季,等.污泥干化焚烧乃污泥处理/处置终极方式[J].中国给水排水, 2019,35(4):35-42. Hao X D, Chen Q, Li J, et al. Ultimate approach to handle excess sludge:incineration and drying[J]. China Water&Wastewater, 2019, 35(4):35-42. [72] 吴小飞.CO2+水复合萃取分离回收油泥中油分的机理和工艺研究[D].北京:中国石油大学(北京), 2020. Wu X F. Research on mechanism and technology of the oil recovery from oily sludge via CO2+water composite extraction[D]. Beijing:China University of Petroleum (Beijing), 2020. [73] 李升,焦方方,王航航,等.污泥厌氧消化/热解气化耦合技术处理市政污泥[J].中国给水排水, 2023,39(16):110-115. Li S, Jiao F F, Wang H H, et al. Municipal sludge treatment by anaerobic digestion and pyrolysis gasification coupling technology[J]. China Water&Wastewater, 2023,39(16):110-115. |
[1] |
WANG Xiao-cong, HAN Xiao-yu, ZHANG Shu-jun, LI Wei, HUANG Jing, JIAO Jia-tong, WANG Qian, WANG Zhi-min, QU Zhi-ming. Research on the application of the PN/A process in projects of sludge-digestion liquid treatment by thermal hydrolysis[J]. CHINA ENVIRONMENTAL SCIENCECE, 2024, 44(7): 3698-3706. |
|
|
|
|