|
|
Characteristics of carbon flux in mixed coniferous and broad-leaved forests in the mountainous areas of Eastern China |
SUN Yan-kun1, ZHANG Yin-zhou1,2, YAO Wei-jie2, YE jing2, ZHANG Jun-bo2, PAN Xiao-le2, LIU Lan-zhong3, WANG Zi-fa2, CHENG Xue-ling2 |
1. College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China; 2. State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; 3. Shanghuang Observatory for Ecological Environment at the Top of Atmospheric Boundary Layer, Institute of Atmospheric Physics, Chinese Academy of Sciences, Jinhua 321203, China |
|
|
Abstract This study explored the carbon sink capacity of the complex mountainous forest ecosystem around the Damaojian Mountain in Wuyi County, Jinhua, Zhejiang Province. Utilizing the eddy covariance method, CO2 fluxes were monitored from June 2022 through May 2023. After rigorous data quality control and analysis, 42% of the data were identified as high-quality CO2 flux measurements. The study draws the following conclusions: This area, primarily composed of mixed coniferous and broad-leaved forests with an energy closure rate of 0.89, effectively represents the flux conditions of the site. The CO2 flux exhibited a U-shaped daily variation, with fluctuations ranging from -1.20 to 0.89mg CO2/(m2·s). An analysis of the seasonal carbon sink capacity revealed the strongest absorption in summer, followed by spring, autumn, and winter, with the net ecosystem carbon exchange (NEE) demonstrating a consistent carbon sink effect month-over-month. The analysis highlighted a negative correlation between CO2 flux and air temperature, whereas both relative humidity and average wind speed positively influenced the CO2 flux. Nighttime respiration-induced CO2 flux also showed a positive correlation with soil temperature. Overall, we have preliminarily explained the unique carbon sink features of the Damaojian Mountain forest ecosystem.
|
Received: 13 November 2023
|
|
|
|
|
[1] Belbute J M, Pereira A M. Arfima Reference Forecasts for Worldwide CO2 Emissions and the National Dimension of the Policy Efforts to Meet Ipcc Targets[J]. Journal of Economic Development, 2022,47(1):1-27. [2] 王锴,朴世龙,何悦,等.中国陆地生态系统碳汇稳定性的空间分布特征及驱动机制[J].中国科学:地球科学, 2023,53(2):216-226. Wang K, Piao S, He Y, et al. Spatial variations and mechanisms for the stability of terrestrial carbon sink in China[J]. Science China Earth Sciences, 2023,53(2):227-236. [3] 张知彬,王祖望,李典谟.生态复杂性研究--综述与展望[J].生态学报, 1998,18(4):99-107. Zhang Z B, Wang Z W, Li D M. Ecological complexity--Review and prospect[J]. Acta Ecologica Sinica, 1998,18(4):99-107. [4] 朱建华,田宇,李奇,等.中国森林生态系统碳汇现状与潜力[J].生态学报, 2023,43(9):3442-3457. Zhu J H, Tian Y, Li Q, et al. The current and potential carbon sink in forest ecosystem in China[J]. Acta Ecologica Sinica, 2023,43(9):3442-3457. [5] 张红星,王效科,冯宗炜,等.用于测定陆地生态系统与大气间CO2交换通量的多通道全自动通量箱系统[J].生态学报, 2007,27(4):1273-1282. Zhang H X, Wang X K, Feng Z W, et al. Multi-channel automated chamber system for continuously monitoring CO2 exchange between agro-ecosystem or soil and the atmosphere[J]. Acta Ecologica Sinica, 2007,27(4):1273-1282. [6] 鲁中明,戴民汉.海气CO2通量与涡动相关法应用研究进展[J].地球科学进展, 2006,21(10):1046-1057. Lu Z M, Dai M H. Advances in air-sea CO2 flux study and the application of eddy covariance technique[J]. Advances in Earth Science, 2006,21(10):1046-1057. [7] 唐家琦,王成杰.大孔径闪烁仪观测地表水热通量研究进展[J].气象科技进展, 2022,12(4):37-42,59. Tang J Q, Wang C J. Research progress of surface water and heat flux observation with large aperture scintillometer[J]. Advances in Meteorological Science and Technology, 2022,12(4):37-42,59. [8] 刘启明,林锦美,张金丽,等.海气CO2通量的溶解无机碳δ~(13) C值示踪研究进展[J].海洋湖沼通报, 2008,30(3):53-60. Liu Q M, Lin J M, Zhang J L,et al.. Progress in air-sea fluxes of carbon dioxide traced by dissolved inorganic carbon stable[J]. Transactions of Oceanology and Limnology, 2008,30(3):53-60. [9] 祁亚辉,王小丹.陆地生态系统碳通量面临的挑战与机遇--基于涡度协方差测定[J].生态学报, 2023,43(8):2979-2994. Qi Y H, Wang X D. Chanllenges and opportunities for measuring carbon fluxes in terrestrial ecosystems by eddy covariance[J]. Acta Ecologica, 2023,43(8):2979-2994. [10] Kucharik C J, Barford C C, Maayar M E, et al. A multiyear evaluation of a dynamic global vegetation model at three ameri flux forest sites:Vegetation structure, phenology, soil temperature, and CO2 and H2O vapor exchange[J]. Ecological Modelling, 2006,196(1):1-31. [11] Aubinet M, Grelle A, Ibrom A, et al. Estimates of the annual net carbon and water exchange of forests:The euroflux methodology[J]. Advances in Ecological Research:Academic Press, 2000,30(1):113-175. [12] Saigusa N, Yamamoto S, Murayama S, et al. Inter-annual variability of carbon budget components in an AsiaFlux forest site estimated by long-term flux measurements[J]. Agricultural and Forest Meteorology, 2005,134(1):4-16. [13] 于贵瑞,张雷明,孙晓敏.中国陆地生态系统通量观测研究网络(ChinaFLUX)的主要进展及发展展望[J].地理科学进展, 2014, 33(7):903-917. Yu G R, Zhang L M, Sun X M. Progresses and prospects of Chinese terrestrial ecosystem flux observation and research network (ChinaFLUX)[J]. Progress in Geography, 2014,33(7):903-917. [14] 刘辉志,涂钢,董文杰,等.半干旱地区地气界面水汽和二氧化碳通量的日变化及季节变化[J].大气科学, 2006,30(1):108-118. Liu H Z, Tu G, Dong W J, et al. Seasonal and diurnal variations of the exchange of water vapor and CO2 between the land surface and atmosphere in the semi-arid area[J]. Chinese Journal of Atmospheric Sciences, 2006,30(1):108-118. [15] 汪文雅,郭建侠,王英舜,等.锡林浩特草原CO2通量特征及其影响因素分析[J].气象科学, 2015,35(1):100-107. Wang W Y, Guo J X, Wang Y S, et al. Observing characteristics of CO2 flux and its influencing factors over Xilinhot grassland[J]. Journal of the Meteorological Sciences, 2015,35(1):100-107. [16] 宋涛,王跃思,宋长春,等.三江平原稻田CO2通量及其环境响应特征[J].中国环境科学, 2006,26(6):657-661. Song T, Wang Y S, Song C C, et al. CO2 fluxes from rice fields of Sanjiang plain and its environmental response factors[J]. China Environmental Science, 2006,26(6):657-661. [17] 段月,程雪玲,华维,等.北京城区二氧化碳时空分布及湍流谱特征[J].气候与环境研究, 2018,23(6):725-736. Duan Y, Cheng X L, H W, et al. 2018. Spatial and temporal distribution of CO2 and its spectrum characteristic in Beijing urban area[J]. Climatic and Environmental Research (in Chinese), 2018,23(6):725-736. [18] 周存宇,周国逸,张德强,等.鼎湖山森林地表CO2通量及其影响因子的研究[J].中国科学(D辑:地球科学), 2004,34(S2):175-182. Zhou C Y, Zhou G Y, Zhang D Q, et al. Research on forest floor CO2 flux and its influencing factors in Dinghu Mountain[J]. SCIENCE IN CHINA Ser. D Earth Sciences, 2004,34(S2):175-182. [19] 陈世苹,游翠海,胡中民,等.涡度相关技术及其在陆地生态系统通量研究中的应用[J].植物生态学报, 2020,44(4):291-304. Chen S P, You C H, Hu Z M, et all. Eddy covariance technique and its applications in flux observations of terrestrial ecosystems[J]. Chinese Journal of Plant Ecology, 2020,44(4):291-304. [20] 孙晓敏,朱治林,许金萍,等.涡度相关测定中平均周期参数的确定及其影响分析[J].中国科学(D辑:地球科学), 2004,34(S2):30-36. Sun X M, Zhou Z L, Xu J P, et al. Determination of average period parameters in eddy covariance measurements and its impact analysis[J]. Science in China Ser. D Earth Sciences, 2004,34(S2):30-36. [21] Wilczak J M, Oncley S P, Stage S A. Sonic anemometer tilt correction algorithms[J]. Boundary-Layer Meteorology, 2001,99(1):127-150. [22] Webb E K, Pearman G I, Leuning R. Correction of flux measurements for density effects due to heat and water vapour transfer[J]. Quarterly Journal of the Royal Meteorological Society, 1980,106(447):85-100. [23] Foken Th, Wichura B. Tools for quality assessment of surface-based flux measurements[J]. Agricultural and Forest Meteorology, 1996, 78(1):83-105. [24] 朱治林,孙晓敏,温学发,等.中国通量网(ChinaFLUX)夜间CO2涡度相关通量数据处理方法研究[J].中国科学.D辑:地球科学, 2006, 36(S1):34-44. Zhu Z L, Sun X M, Wen X F, et al. Research on data processing methods for nocturnal CO2 eddy covariance fluxes in ChinaFLUX[J]. Science in China Ser. D Earth Sciences, 2006,36(S1):34-44. [25] Falge E, Baldocchi D, Olson R, et al. Gap filling strategies for defensible annual sums of net ecosystem exchange[J]. Agricultural and Forest Meteorology, 2001,107(1):43-69. [26] 李正泉,于贵瑞,温学发,等.中国通量观测网络(ChinaFLUX)能量平衡闭合状况的评价[J].中国科学(D辑:地球科学), 2004,34(S2):46-56. Li Z Q, Yu G R, Wen X F, et al. Evaluation of energy balance closure status in ChinaFLUX observation network[J]. Science in China Ser. D Earth Sciences, 2004,34(S2):46-56. [27] 范德民,张宇,苏有琦,等.川南森林湍流通量质量评价及贡献区分析[J].高原气象, 2024,43(1):227-240. Fan D M, Zhang Y, Su Y Q, et al. Turbulent flux mass evaluation and contribution region analysis of the underlying surface in Southern Sichuan Forest[J]. Plateau Meteorology, 2024,43(1):227-240. [28] 姜明,郭建侠,景元书.稳态与湍流特征测试对通量数据质量的评价[J].气象, 2012,38(11):1436-1442. Jiang M, Guo J X, Jing Y S. Using quality assessment method to test the data of eddy covariance[J]. Meteorological Monthly, 2012,38(11):1436-1442. [29] 王伟,申双和,刘寿东,等.太湖生态系统能量闭合特征及其影响因素[J].生态学报, 2017,37(18):5935-5950. Wang W, Shen S H, Liu S D, et al. Mechanistic analysis of the observed energy imbalance of Lake Taihu[J]. Acta Ecologica Sinica, 2017,37(18):5935-5950. [30] 李桐,鄢春华,王蓓,等.九寨沟针阔混交林能量平衡特征[J].生态学报, 2018,38(22):8098-8106. Li T, Yan C H, Wang B, et al. Characteristics of energy balance in a mixed forest in Jiuzhaigou Valley[J]. Acta Ecologica Sinica, 2018, 38(22):8098-8106. [31] 李小梅,张秋良.环境因子对兴安落叶松林生态系统CO2通量的影响[J].北京林业大学学报, 2015,37(8):31-39. Li X M; Zhang Q L. Impact of climate factors on CO2 flux characteristics in a Larix gmelinii forest ecosystem[J]. Journal of Beijing Forestry University, 2015,37(8):31-39. [32] 纪小芳,鲁建兵,杨军,等.凤阳山针阔混交林碳通量变化特征及其影响因子[J].东北林业大学学报, 2019,47(3):49-55. Ji X F, Lu J B, Y J, et al. Carbon flux variation characteristics and its influencing factors in coniferous and broad-leaved mixed forest in Fengyang Mountain[J]. Journal of Northeast Forestry University, 2019,47(3):49-55. [33] 方成圆,江洪,牛晓栋,等.天目山常绿、落叶阔叶混交林生长季能量通量及平衡分析[J].福建农林大学学报(自然科学版), 2016,45(4):391-397. Fang C Y, Jiang H, Niu X D, et al. Energy flux and balance analysis of evergreen and deciduous broad-leaved mixed forest in Tianmu Mountain during growing season[J]. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 2016,45(4):391-397. [34] 吴志祥,陶忠良,兰国玉,等.海南岛橡胶林生态系统碳通量及其影响因子研究[J].热带作物学报, 2014,35(11):2099-2108. Wu Z X, Tao Z L, Lan G Y, et al. The net ecosystem carbon exchange and its environmental factors in a tropical rubber plantation ecosystem in Hainan Island[J]. Chinese Journal of Tropical Crops, 2014,35(11):2099-2108. [35] 王松年,王云琦,王凯,等.缙云山针阔叶混交林涡相关适用性及碳通量变化特征[J].林业科学研究, 2022,35(4):93-102. Wang S N, Wang Y Q, Wang K, et al. Eddy covariance applicability and carbon flux variation characteristics of coniferous and broad-leaved mixed forests in Jinyun Mountain[J]. Forest Research, 2022, 35(4):93-102. [36] 朱苑,刘帆,王传宽,等.帽儿山温带落叶阔叶林净生态系统碳交换的日变化及光响应特征[J].应用生态学报, 2020,31(1):72-82. Zhu Y, Liu F, Wang C-K, et al. Diurnal variation and light response of net ecosystem carbon exchange in a temperate broadleaved deciduous forest at Maoershan, Northeast China[J]. Chinese Journal of Applied Ecology, 2020,31(1):72-82. [37] 赵晓松,关德新,吴家兵,等.长白山阔叶红松林通量观测的footprint及源区分布[J].北京林业大学学报, 2005,27(3):17-23. Zhao X S, Guan D X, Wu J B, et al. Distribution of footprint and flux source area of the mixed forest of broad-leaved and Korean pine in Changbai Mountain[J]. Journal of Beijing Forestry University, 2005, 27(3):17-23. [38] 王美媛,张秋良.兴安落叶松林通量观测足迹与源区分布[J].西北林学院学报, 2018,33(5):9-15. Wang M Y, Zhang Q L. Flux footprint of larixgmelinii forest and the distribution of Source Area[J]. Journal of Northwest Forestry University, 2018,33(5):9-15. [39] 纪小芳,龚元,郑翔,等.凤阳山森林生态系统碳交换及其物候特征[J].地球环境学报, 2020,11(4):376-389. Ji X F, Gong Y, Zheng Xiang, et al. Local-scale carbon exchange and phenological characteristics of forest ecosystem in Fengyang Mountain of Zhejiang, China using tower-based eddy covariance technique[J]. Journal of Earth Environment, 2020,11(4):376-389. [40] 万家鸣,律江,石云,等.散射辐射对杨树人工林生态系统总初级生产力的影响[J].林业科学, 2023,59(5):1-10. Wan J M, Lü J, Shi Y, et al. Effects of diffuse radiation on the gross primary productivity of a poplar plantation[J]. Scientia Silvae Sinicae, 2023,59(5):1-10. [41] 任小丽,路倩倩,何洪林,等.中国东部南北样带森林生态系统蒸腾与蒸散比值(T/ET)时空变化[J].地理学报, 2019,74(1):63-75. Ren X L, Lu Q Q, He H L, et al. Spatio-temporal variations of the ratio of transpiration to evapotranspiration in forest ecosystems along the North-South Transect of Eastern China[J]. Acta Geographica Sinica, 74(1):63-75. |
|
|
|