|
|
Changes and causes of CO2 concentration in Hangzhou during COVID-19 |
CHEN Xiao-ming1, LIU Shuo2, ZANG Kun-peng2, LIN Yi2, CHEN Yuan-yuan2, HU Zhi-wei1, WEN Jun1, LAN Wen-gang1, PAN Feng-mei1, LU Yan-ran1, CHEN Li-han1, LI Shan1, GUO Peng1, FANG Shuang-xi2,3 |
1. Department of Environment, Zhejiang University of Technology, Hangzhou 310014, China; 2. Zhejiang Carbon Neutral Innovation Institute & Zhejiang International Cooperation Base for Science and Technology on Carbon Emission Reduction and Monitoring, Zhejiang University of Technology, Hangzhou 310014, China; 3. Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information & Scientific Technology, Nanjing 210044, China |
|
|
Abstract CO2 data from September 2020 to December 2022 were analyzed and compared before and after the COVID-19 epidemic at a typical urban monitoring station (Hangzhou) in the Yangtze River Delta. The results showed that due to the impact of COVID-19, the average CO2 concentration at Hangzhou in 2021 decreased significantly, by 12.7×10-6 (2.8%) compared with that in 2019, and achieved “zero growth” in 2022. The decrease of tourists and other population activities after the epidemic was the key factor that led to the significant decrease of CO2 concentration in summer and autumn (May to October). Compared with the pre-epidemic period, there was no significant difference in CO2 concentrations between weekdays and weekends after the epidemic, and no significant increase in CO2 concentration during peak travel hours on weekdays, indicating that the contribution of anthropogenic activities and traffic emissions to Hangzhou’s CO2 concentrations decreased significantly after the epidemic. Cluster analysis of 72 hour back trajectory revealed that the CO2 concentration at Hangzhou was not only affected by local anthropogenic emissions, but also affected by air mass transport from densely populated and industrially developed areas.
|
Received: 13 December 2023
|
|
|
|
|
[1] 刘立新,周凌晞,夏玲君,等.本底大气CO2观测分析过程中QA/QC方法的建立与评估[J]. 环境科学, 2014,35(12):4482-4488. Liu L X, Zhou L X, Xia L J, et al. Establishment and assessment of QA/QC method for sampling and analysis of atmosphere background CO2[J]. Environmental Science, 2014,35(12):4482-4488. [2] Etheridge D M, Steele L P, Langenfelds R L, et al. Natural and anthropogenic changes in atmospheric CO2 over the last 1000 years from air in Antarctic ice and firn [J]. Journal of Geophysical Research-Atmospheres, 1996,101(D2):4115-4128. [3] WMO Greenhouse Gas Bulletin, 2022. The state of greenhouse gases in the atmosphere based on global observations through 2021[R]. No. 18, World Meteorological Organization, Geneva. [4] Sreenivas G, Mahesh P, Mahalakshmi D V, et al. Seasonal and annual variations of CO2 and CH4 at Shadnagar, a semi-urban site [J]. Science of the Total Environment, 2022,819:153114. [5] 程巳阳,安兴琴,周凌晞,等.北京上甸子大气本底站CO2浓度的源汇区域代表性研究[J]. 中国环境科学, 2015,35(9):2576-2584. Chen S Y, An X Q, Zhou L X, et al. CO2 concentration representation of source and sink area at Shangdianzi atmospheric background station in Beijing [J]. China Environmental Science, 2015,35(9):2576-2584. [6] Grimm N B, Faeth S H, Golubiewski N E, et al. Global change and the ecology of cities [J]. Science, 2008,319(5864):756-760. [7] Li Y, Shen J Y, Xia C Y, et al. The impact of urban scale on carbon metabolism - a case study of Hangzhou, China [J]. Journal of Cleaner Production, 2021,292:126055. [8] Gregg J S, Andres R J, Marland G. China: Emissions pattern of the world leader in CO2 emissions from fossil fuel consumption and cement production [J]. Geophysical Research Letters, 2008,35(8): L08806. [9] Xia C Y, Li Y, Xu T B, et al. Quantifying the spatial patterns of urban carbon metabolism: A case study of Hangzhou, China [J]. Ecological Indicators, 2018,95:474-484. [10] Wang Q Q, Lu M, Bai Z M, et al. Coronavirus pandemic reduced China's CO2 emissions in short-term, while stimulus packages may lead to emissions growth in medium- and long-term [J]. Applied Energy, 2020,278:115735. [11] Fang S X, Du R G, Qi B, et al. Variation of carbon dioxide mole fraction at a typical urban area in the Yangtze River Delta, China [J]. Atmospheric Research, 2022,265:105884. [12] Verhulst K R, Karion A, Kim J, et al. Carbon dioxide and methane measurements from the Los Angeles Megacity Carbon Project - Part 1: calibration, urban enhancements, and uncertainty estimates [J]. Atmospheric Chemistry and Physics, 2017,17(13):8313-8341. [13] Newman S, Jeong S, Fischer M L, et al. Diurnal tracking of anthropogenic CO2 emissions in the Los Angeles basin megacity during spring 2010[J]. Atmospheric Chemistry and Physics, 2013,13(8):4359-4372. [14] Lauvaux T, Miles N L, Deng A J, et al. High-resolution atmospheric inversion of urban CO2 emissions during the dormant season of the Indianapolis Flux Experiment (INFLUX) [J]. Journal of Geophysical Research-Atmospheres, 2016,121(10):5213-5236. [15] McKain K, Wofsy S C, Nehrkorn T, et al. Assessment of ground-based atmospheric observations for verification of greenhouse gas emissions from an urban region [J]. Proceedings of the National Academy of Sciences of the United States of America, 2012,109(22):8423-8428. [16] Boon A, Broquet G, Clifford D J, et al. Analysis of the potential of near-ground measurements of CO2and CH4in London, UK, for the monitoring of city-scale emissions using an atmospheric transport model [J]. Atmospheric Chemistry and Physics, 2016,16(11):6735- 6756. [17] Xueref-Remy I, Dieudonne E, Vuillemin C, et al. Diurnal, synoptic and seasonal variability of atmospheric CO2 in the Paris megacity area [J]. Atmospheric Chemistry and Physics, 2018,18(5):3335-3362. [18] Wei C, Wang M H, Fu Q Y, et al. Temporal characteristics of greenhouse gases (CO2 and CH4) in the megacity Shanghai, China: Association with air pollutants and meteorological conditions [J]. Atmospheric Research, 2020,235:104759. [19] Huang X X, Wang T J, Talbot R, et al. Temporal characteristics of atmospheric CO2 in urban Nanjing, China [J]. Atmospheric Research, 2015,153:437-450. [20] 吴健生,晋雪茹,王晗,等.中国碳排放及影响因素的市域尺度分析[J]. 环境科学, 2023,44(5):2974-2982. Wu J S, Jin X R, Wang H, et al. Analysis of carbon emissions and influencing factors in China based on city scale [J]. Environmental Science, 2023,44(5):2974-2982. [21] Crosson E R. A cavity ring-down analyzer for measuring atmospheric levels of methane, carbon dioxide, and water vapor [J]. Applied Physics B-Lasers and Optics, 2008,92(3):403-408. [22] 方双喜,周凌晞,栾天,等.浙江临安大气本底站CO浓度及变化特征[J]. 环境科学, 2014,35(7):2454-2459. Fang S X, Zhou L X, Luan T, et al. Distribution of CO at Lin'an station in Zhejiang province [J]. Environmental Science, 2014,35(7):2454- 2459. [23] Zhao C L, Tans P P. Estimating uncertainty of the WMO mole fraction scale for carbon dioxide in air [J]. Journal of Geophysical Research- Atmospheres, 2006,111(D8):D08S09. [24] Fang S X, Zhou L X, Tans P P, et al. In situ measurement of atmospheric CO2 at the four WMO/GAW stations in China [J]. Atmospheric Chemistry and Physics, 2014,14(5):2541-2554. [25] 栾天,周凌晞,方双喜,等.龙凤山本底站大气CO2数据筛分及浓度特征研究[J]. 环境科学, 2014,35(8):2864-2870. Luan T, Zhou L X, Fang S X, et al. Atmospheric CO2 data filtering method and characteristics of the molar fractions at the Longfengshan WMO/GAW regional station in China [J]. Environmental Science, 2014,35(8):2864-2870. [26] Fang S X, Tans P P, Steinbacher M, et al. Comparison of the regional CO2 mole fraction filtering approaches at a WMO/GAW regional station in China [J]. Atmospheric Measurement Techniques, 2015, 8(12):5301-5313. [27] Polissar A V, Hopke P K, Paatero P, et al. The aerosol at Barrow, Alaska: Long-term trends and source locations [J]. Atmospheric Environment, 1999,33(16):2441-2458. [28] Hsu Y K, Holsen T M, Hopke P K. Comparison of hybrid receptor models to locate PCB sources in Chicago [J]. Atmospheric Environment, 2003,37(4):545-562. [29] 中国气象局.中国温室气体公报-2019[R]. [2021-07-20].http: //www.scio.gov.cn/xwfb/bwxwfb/gbwfbh/qxj/202307/t20230703_721936_m.html. China meteorological administration. China greenhouse gas bulletin, 2020[R]. [2021-07-20]. http: //www.scio.gov.cn/xwfb/bwxwfb/gbwf bh/qxj/202307/t20230703_721936_m.html. [30] 中国气象局.中国温室气体公报-2020[R]. [2022-09-29].https: //www.gov.cn/xinwen/2022-09/30/content_5713998.htm. China meteorological administration. China greenhouse gas bulletin, 2020[R]. [2022-09-29].https://www.gov.cn/xinwen/2022-09/30/cont ent_5713998.html. [31] 中国气象局.中国温室气体公报-2021[R]. [2023-01-09]. https: //www.cma.gov.cn/zfxxgk/gknr/qxbg/202301/t20230119_5274988.html. China meteorological administration. China greenhouse gas bulletin, 2021[R]. [2023-01-09].https://www.cma.gov.cn/zfxxgk/gknr/qxbg/ 202301/t20230119_5274988.html. [32] WMO Greenhouse Gas Bulletin, 2020. The state of greenhouse gases in the atmosphere based on global observations through 2019[R]. No. 16, World Meteorological Organization, Genewa. [33] WMO Greenhouse Gas Bulletin, 2021. The state of greenhouse gases in the atmosphere based on global observations through 2020[R]. No. 17, World Meteorological Organization, Genewa. [34] Han P F, Cai Q X, Oda T, et al. Assessing the recent impact of COVID-19on carbon emissions from China using domestic economic data [J]. Science of the Total Environment, 2021,750:141688. [35] 胡诚,艾昕悦,侯波,等.2020年新冠疫情前后南昌市大气CO2浓度变化及影响因子分析[J]. 南京信息工程大学学报(自然科学版), 2022,14(1):40-49. Hu C, Ai X Y, Hou B, et al. Atmospheric CO2 concentration and its influence factors during 2020 COVID-19 pandemic in Nanchang [J]. Journal of Nanjing University of Information Science & Technology (Natural Science Edition), 2022,14(1):40-49. [36] Wu S G, Zhou W J, Xiong X H, et al. The impact of COVID-19 lockdown on atmospheric CO2 in Xi'an, China [J]. Environmental Research, 2021,197:111208. [37] 刘竹,崔夺,邓铸,等.新型冠状病毒肺炎疫情对中国2020年碳排放的影响[J]. 科学通报, 2021,66(15):1912-1922. Liu Z, Cui D, Deng Z, et al. Impact on China’s CO2 emissions from COVID-19 pandemic [J]. Chinese Science Bulletin, 2021,66(15): 1912-1922. [38] Liu L X, Tans P P, Xia L J, et al. Analysis of patterns in the concentrations of atmospheric greenhouse gases measured in two typical urban clusters in China [J]. Atmospheric Environment, 2018, 173:343-354. [39] 韦芬芬,林惠娟,曹淑娅,等.苏南地区CO2本底浓度及源汇特征[J]. 中国环境科学, 2020,40(3):975-982. Wei F F, Lin H J, Cao S Y, et al. A study on background concentration and source-sink characteristics of CO2 in south of Jiangsu [J]. China Environmental Science, 2020,40(3):975-982. [40] Zhou L X, Tang J, Wen Y P, et al. The impact of local winds and long-range transport on the continuous carbon dioxide record at Mount Waliguan, China [J]. Tellus Series B-Chemical and Physical Meteorology, 2003,55(2):145-158. [41] Yang Y, Ting W, Pucai W, et al. In-situ measurement of CO2 at the Xinglong regional background station over North China [J]. Atmospheric and Oceanic Science Letters, 2019,12(6):385-391. [42] Leng C P, Duan J Y, Xu C, et al. Insights into a historic severe haze event in Shanghai: synoptic situation, boundary layer and pollutants [J]. Atmospheric Chemistry and Physics, 2016,16(14):9221-9234. [43] Liu S, Fang S X, Liang M, et al. Temporal patterns and source regions of atmospheric carbon monoxide at two background stations in China [J]. Atmospheric Research, 2019,220:169-180. [44] Xu S C, He Z X, Long R Y. Factors that influence carbon emissions due to energy consumption in China: Decomposition analysis using LMDI [J]. Applied Energy, 2014,127:182-193. [45] 任杨千千,连懿,李海笑,等.中国大陆CO2浓度时空分布特征及驱动因素[J]. 中国环境科学, 2023,43(4):1919-1929. Renyang Q Q, Lian Y, Li H X, et al. Spatial and temporal distribution of CO2 concentration in Chinese mainland and its influencing factors [J]. China Environmental Science, 2023,43(4):1919-1929. [46] Idso S B, Idso C D, Balling R C. Seasonal and diurnal variations of near-surface atmospheric CO2 concentration within a residential sector of the urban CO2 dome of Phoenix, AZ, USA [J]. Atmospheric Environment, 2002,36(10):1655-1660. [47] Rice A, Bostrom G. Measurements of carbon dioxide in an Oregon metropolitan region [J]. Atmospheric Environment, 2011,45(5):1138- 1144. [48] Kumar M K, Nagendra S M S. Characteristics of ground level CO2 concentrations over contrasting land uses in a tropical urban environment [J]. Atmospheric Environment, 2015,115:286-294. [49] 张芳,周凌晞,许林.瓦里关大气CH4浓度变化及其潜在源区分析[J]. 中国科学:地球科学, 2013,43(4):536-546. Zhang F, Zhou L X, Xu L. Temporal variation of atmospheric CH4 and the potential source regions at Waliguan, China [J]. Science China: Earth Sciences, 2013,56(5):727-736. [50] 杨柏,秦广鹏,邬钦.“双碳”目标下中国省域碳排放核算分析[J]. 环境科学, 2022,43(12):5840-5849. Yang B, Qin G P, Wu Q. Analysis of provincial CO2 emission accounting in China under the carbon peaking and carbon neutrality goals [J]. Environmental Science, 2022,43(12):5840-5849. [51] 何月,绳梦雅,雷莉萍,等.长三角地区大气NO2和CO2浓度的时空变化及驱动因子分析[J]. 中国环境科学, 2022,42(8):3544-3553. He Y, Sheng M Y, Lei L P, et al. Driving factors and spatio-temporal distribution on NO2 and CO2 in the Yangtze River Delta [J]. China Environmental Science, 2022,42(8):3544-3553. [52] 浦静姣,徐宏辉,顾骏强,等.长江三角洲背景地区CO2浓度变化特征研究[J]. 中国环境科学, 2012,32(6):973-979. Pu J J, Xu H H, Gu J Q, et al. Study on the concentration variation of CO2 in the background area of Yangtze River Delta [J]. China Environmental Science, 2012,32(6):973-979. [53] 张雪梅,曹丹丹,王鑫,等.中国省域能源消费二氧化碳排放状态分析与情景预测[J]. 生态经济, 2023,39(12):26-32. Zhang X M, Cao D D, Wang X, et al. Analysis on the status and scenario forecast of carbon dioxide emissions in China’s provincial energy consumption [J]. Ecological Economy, 2023,39(12):26-32. |
|
|
|