|
|
Spatiotemporal evolution of vegetation coverage in Beijing-Tianjin-Hebei and its response to natural anthropogenic changes |
CHEN Shu-qi, HE Ling, YAN Feng |
Hebei Agriculture University, Baoding 071000, China |
|
|
Abstract This study investigated the spatiotemporal changes of vegetation cover in Beijing-Tianjin-Hebei region using Sen trend analysis, Mann Kendall significance test and Hurst index analysis, in which FVC was synthesized using the maximum value of the like element dichotomous model based on the normalized difference vegetation index (NDVI) data from 2001 to 2020. In addition, this study also quantified the relative contribution rate of impact factors using meteorological factor data, correlation analysis and residual analysis. The results indicated that the vegetation construction in Beijing-Tianjin-Hebei region was good in the past 20 years. The average coverage was 64.5% in the whole region, and the vegetation change rate varied from -0.0597421/a to 0.039797/a. However, the vegetation cover fluctuated greatly, which showed obvious geographical differences. The spatiotemporal variation of FVC in this region can be affected by a multitude of factors. The distribution of FVC was negatively correlated with temperature, and its distribution area was close to the geographical boundaries, which was related to the urban heat island effect. Conversely, the FVC showed a positive correlation with precipitation, and its distribution followed ecological zones, predominantly regulated by geographical factors. The average residual error of human activities was -0.00105, mainly exhibiting negative impact. Furthermore, the relative contribution rates of natural factors and human factors were 31.33% and 68.67%, respectively. This revealed that human activities were the major driver of vegetation change. Although a positive trend is expected, a decrease in FVC is also predicted in urban areas. This study can guide the FVC monitoring at the junction of Beijing, Tianjin and Hebei, carry out positive human intervention, enhance the environmental quality of Beijing-Tianjin-Hebei, and boost the high-quality development of the regional ecological environment.
|
Received: 01 November 2023
|
|
|
|
|
[1] 张艳军,李子辉,官冬杰,等.2000~2020年成渝双城经济圈植被生态质量变化及其对极端气候因子的响应[J]. 中国环境科学, 2023, 43(9):4876-4885. Zhang Y J, Li Z H, Guan D J, et al. Changes of vegetation ecological quality in the Chengdu-Chongqing economic circle from 2000 to 2020 and its response to extreme climatic factor [J]. China Environmental Science, 2023,43(9):4876-4885. [2] 康帅直,穆琪,赵永华,等.黄土高原神府资源开采区生态环境质量时空格局特征[J]. 生态学报, 2023,43(7):2781-2792. Kang S Z,Mu Q, Zhao Y H, et al. Temporal and spatial pattern characteristics of ecological environmental quality in Shenfu mining area of Loess Plateau [J]. Acta Ecologica Sinica, 2023,43(7):2781- 2792. [3] Wookey P A,Aerts R,Bardgett R D, et al. Ecosystemfeedbacks and cascade processes: Understanding theirrole in the responses of Arctic and alpine ecosystems to environmental change [J]. Global Change Biology, 2010,15(5):1153-1172. [4] 方登先,王勇辉.夏尔希里自然保护区生长季NDVI变化特征及驱动力研究[J]. 水土保持学报, 2023,37(2):127-135. Fang D X, Wang Y H. Study on variation characteristics and driving forces of NDVI during growing season in Xarxili Nature Reserve [J]. Journal of Soil and Water Conservation, 2023,37(2):127-135. [5] 覃巧婷,陈建军,杨艳萍,等.黄河源植被时空变化及其对地形和气候的响应[J]. 中国环境科学, 2021,41(8):3832-3841. Qin Q T, Chen J J, Yang Y P, et al. Spatiotemporal variations of vegetation and its response to topography and climate in the source region of the Yellow River [J]. China Environmental Science, 2021, 41(8):3832-3841. [6] 戴强玉,徐勇,赵纯,等.四川盆地植被EVI动态变化及其驱动机制[J]. 中国环境科学, 2023,43(8):4292-4304. Dai Q Y, Xu Y, Zhao C, et al. Dynamic variation of vegetation EVI and its driving mechanism in the Sichuan Basin [J]. China Environmental Science, 2023,43(8):4292-4304. [7] 张慧龙,杨秀春,杨东,等.2000~2020年内蒙古草地植被覆盖度时空变化及趋势预测[J]. 草业学报, 2023,32(8):1-13. Zhang H L, Yang X C, Yang D, et al. Spatio-temporal changes in grassland fractional vegetation cover in Inner Mongolia from 2000 to 2020 and a future forecast [J]. Acta Prataculturae Sinica, 2023,32(8): 1−13. [8] 王晓蕾,石守海,陈江朝霞.黄河流域植被覆盖度变化及驱动因素[J]. 中国环境科学, 2022,42(11):5358-5368. Wang X L, SHI S H, CHEN J Z X. Change and driving factors of vegetation coverage in the Yellow River Basin [J]. China Environmental Science, 2022,42(11):5358-5368. [9] 耿庆玲,陈晓青,赫晓慧,等.中国不同植被类型归一化植被指数对气候变化和人类活动的响应[J]. 生态学报, 2022,42(9):3557-3568. Geng Q L, Chen X Q, He X H, et al. Vegetation dynamics and its response to climate change and human activities based on different vegetation types in China [J]. Acta Ecologica Sinica, 2022,42(9): 3557-3568. [10] 赵丹,王祖伟,张国壮,等.因子回归和交互联合探索区域植被覆盖度的影响因素——以三江源地区为例[J]. 中国环境科学, 2022,42(8):3903-3912. Zhao D, Wang Z W, Zhang G Z, et al. Identifying factors affecting regional fractional vegetation cover based on a combination of factor regression and interaction—A case study on the Three-River Headwaters Region [J]. China Environmental Science, 2022,42(8): 3903-3912. [11] 李梦华,韩颖娟,赵慧,等.基于地理探测器的宁夏植被覆盖度时空变化特征及其驱动因子分析[J]. 生态环境学报, 2022,31(7):1317- 1325. Li M H, Han Y J, Zhao H, et al. Analysis on spatial-temporal variation characteristics and driving factors of fractional vegetation cover in Ningxia based on geographical detector [J]. Ecology and Environmental Sciences, 2022,31(7):1317-1325. [12] 余晨渝,肖作林,刘睿,等.人类活动对西南山地植被覆盖变化的影响——以重庆市为例[J]. 生态学报, 2022,42(17):7177-7186. Yu C Y, Xiao Z L, Liu R, et al. Analysis of human activities as driving forces of vegetation cover changes in mountainous areas of Southwest China from 2000 to 2020: a case study in Chongqing [J]. Acta Ecologica Sinica, 2022,42(17):7177-7186. [13] 徐勇,黄雯婷,靖娟利,等.京津冀地区植被NDVI动态变化及其与气候因子的关系[J]. 水土保持通报, 2020,40(5):319-327. Xu Y, Huang W T, Jing J L, et al. Dynamic variation of vegetation cover and its relation with climate variables in Beijing- Tianjin-Hebei region [J]. Bulletin of Soil and Water Conservation, 2020,40(5):319- 327. [14] 孟琪,武志涛,杜自强,等.基于地理探测器的区域植被覆盖度的定量影响——以京津风沙源区为例[J]. 中国环境科学, 2021,41(2): 826-836. Meng Q, Wu Z T, Du Z Q, et al. Quantitative influence of regional fractional vegetation cover based on geodetector model—Take the Beijing-Tianjin sand source region as an example [J]. China Environmental Science, 2021,41(2):826-836. [15] 张蓬涛,刘双嘉,周智,等.京津冀地区生态系统服务供需测度及时空演变[J]. 生态学报, 2021,41(9):3354-3367. Zhang P T, Liu S J, Zhou Z, et al. Supply and demand measurement and spatio-temporal evolution of ecosystem services in Beijing Tianjin-Hebei Region [J]. Acta Ecologica Sinica, 2021,41(9):3354- 3367. [16] 马震,谢海澜,林良俊,等.京津冀地区国土资源环境地质条件分析[J]. 中国地质, 2017,44(5):857-873. Ma Z, Xie H L, Lin L J, et al. The environmental geological conditions of Land resources in the Beijing -Tianjin-Hebei region [J]. Geology in China, 2017,44(5):857-873. [17] 白钰弘,秦欣雅,赵祥,等.京津冀地区城市发展对人居环境自然舒适度的影响评估[J/OL]. 北京师范大学学报(自然科学版)(2023- 06-30)[2023-09-01]. https://kns.cnki.net/kcms2/detail/11.1991.n. 20230630.0921.001.html. Bai Y H, Qin X Y, Zhao X, et al. Assessment of the impact of urban development on natural comfort of human living environment in the Beijing Tianjin Hebei Region [J/OL]. Journal of Beijing Normal University (Natural Science)(2023-06-30)[2023-09-01]. https://kns. cnki.net/kcms2/detail/11.1991.n.20230630.0921.001.html. [18] 靳甜甜,曹二佳,巩杰.2000~2018年子午岭区植被覆盖时空变化及其与气候变化和人类活动的关系[J]. 水土保持通报, 2022,42(1): 335-343. Jin T T, Cao E J, Gong Jie. Spatiotemporal variations of vegetation coverage and its relationships with climate change and humanactivities in Ziwuling Region during 2000~2018[J]. Bulletin of Soil and Water Conservation, 2022,42(1):335-343. [19] 金凯,王飞,韩剑桥,等,1982~2015年中国气候变化和人类活动对植被NDVI变化的影响[J]. 地理学报, 2022,75(5):961-974. Jin K, Wang F, Han J Q, et al. Contribution of climatic change and human activities to vegetation NDVI change over China during 1982~ 2015[J]. Acta Geographica Sinica, 2022,75(5):961-974. [20] 阎世杰,王欢,焦珂伟.京津冀地区植被时空动态及定量归因[J]. 地球信息科学学报, 2019,21(5):767-780. Yan S J, Wang H, Jiao K W. Spatiotemporal dynamic of NDVI in the Beijing-Tianjin-Hebei region based on MODIS data and quantitative attribution [J]. Journal of Geo-information Science, 2019,21(5):767-780. [21] 方利,王文杰,蒋卫国,等.2000~2014年黑龙江流域(中国)植被覆盖时空变化及其对气候变化的响应[J]. 地理科学, 2017,37(11):1745-1754. Fang L, Wang W J, Jiang W G, et al. Spatio-temporal variations of vegetation cover and its responses to climate change in the Heilongjiang Basin of China from 2000 to 2014[J]. Scientia Geographica Sinica, 2017,37(11):1745-1754. [22] 候静,侯鹏,高海峰,等.中国森林类自然保护区植被时空变化及对气候变化的响应[J/OL]. 生态学杂志(2023-09-07)[2023-09- 21].https://link.cnki.net/urlid/21.1148.Q.20230906.2053.037. Hou J, Hou P, Gao H F, et al.Spatiotemporal variation of vegetations in forest nature reserves in China and its response to climate change [J/OL]. Chinese Journal of Ecology(2023-09-07)[2023-09-21]. https: //link.cnki.net/urlid/21.1148.Q.20230906.2053.037. [23] 张鹏骞,胡理乐,白加德.京津冀地区近20年NDVI时空变化特征[J]. 生态环境学报, 2021,30(1):29-36. Zhang P Q, Hu L L, Bai J D.Spatiotemporal variation of NDVI in Beijing-Tianjin-Hebei region in the past 20 years [J]. Ecology and Environmental Sciences, 2021,30(1):29-36. [24] 赵志平,汉瑞英,关潇,等.2000~2019年京津冀地区植被覆盖状况变化及驱动因素[J]. 生态学报, 2022,42(21):8860-8868. Zhao Z P, Han R Y, Guan X, et al. Change of vegetation coverage and the driving factor in the Beijing Tianjin Hebei region from 2000 to 2019. Acta Ecologica Sinica [J]. 2022,42(21):8860-8868. [25] 张滔,唐宏.基于Google Earth Engine的京津冀2001~2015年植被覆盖变化与城镇扩张研究[J]. 遥感技术与应用, 2018,33(4): 593-599. Zhang T, Tang H. Vegetation cover change and urban expansion in Beijing-Tianjin-Hebei during 2001~2015 based on Google Earth Engine [J]. Remote Sensing Technology and Application, 2018,33(4): 593- 599. [26] 孟丹,李小娟,宫辉力,等.京津冀地区NDVI变化及气候因子驱动分析[J]. 地球信息科学学报, 2015,17(8):1001-1007. Meng D, Li X J, Gong H L, et al. Analysis of spatial-temporal change of NDVI and its climatic driving factors in Beijing- Tianjin-Hebei Metropolis Circle from 2001 to 2013[J]. Journal of Geo-information Science, 2015,17(8):1001-1007. [27] 张惹,邵雪梅,张永.不同海拔高度树木径向生长对气候要素响应的研究进展[J]. 地球环境学报, 2012,3(3):845-854. Zhang H, Shao X M, Zhang Y. Research progress on the response of radial growth to climatic factors at different altitudes [J]. Journal of Earth Environment, 2012,3(3):845-854. [28] 余玉洋,宋丰艺,张世杰.2000~2020年河南省NDVI时空变化及其驱动因素定量分析[J]. 生态环境学报, 2022,31(10):1939-1950. Yu Y Y, Song F Y, Zhang S J. Quantitative analysis of temporal and spatial changes of NDVI and its driving factors in Henan province from 2000 to 2020[J]. Ecology and Environmental Sciences, 2022, 31(10):1939-1950. [29] Meineke E,Youngsteadt E, Dunn R R, et al. Urban warming reduces above ground carbon storage. Proc Biol Sci.2016Oct 12;283(1840): 20161574. [30] 王宏,李晓兵,李霞,等.基于NOAANDVI和MSAVI研究中国北方植被生长季变化[J]. 生态学报, 2007,(2):504-515. Wang H, Li X B, Li X, et al. The variability of vegetation growing season in the northern China based on NOAA NDVI and MSAVI from 1982 to 1999[J]. Acta Ecologica Sinica, 2007,27(2):0504-0515. [31] 张雅芳,郭英,沈彦俊,等.华北平原种植结构变化对农业需水的影响[J]. 中国生态农业学报(中英文), 2020,28(1):8-16. Zhang Y F, Guo Y, Shen Y J, et al. Impact of planting structure changes on agricultural water requirement in North China Plain [J]. Chinese Journal of Eco-Agriculture, 2020,28(1):8-16. [32] Qu S, Wang L C, Lin A W, et al. Distinguishing the impacts of climate change and anthropogenic factors on vegetation dynamics in the Yangtze River Basin, China [J]. Ecological Indicators, 2020,108:105724. [33] Brett A B, Gao L, Ye Y Q, et al. China’s response to a national land-system sustainability emergency [J]. Nature, 2018,559(7713): 193-204. [34] 曹永强,李维佳,袁立婷.河北省主要农作物生产时空格局变化特征及安全评价[J]. 地理科学, 2018,38(8):1319-1327. Cao Y Q, Li W J, Yuan L T. Spatio-temporal pattern variation and safety evaluation of crops in Hebei Province [J]. Scientia Geographica Sinica, 2018,38(8):1319-1327. [35] 中华人民共和国国家统计局.中国统计年鉴[M]. 北京:中国统计出版社, 2020:34-45. National Bureau of statistics of the People's Republic of China.China Statistical Yearbook [M]. Beijing: China Statistics Press, 2020:34-45. [36] 中华人民共和国国家统计局.2020中国人口普查分县资料[M]. 北京:中国统计出版社, 2020:8-15. National Bureau of statistics of the People's Republic of China. Tabulation on 2020 China Population Census by county [M]. Beijing: China Statistics Press, 2020:8-15. [37] Zipper S C, Schatz J, Kucharik C J, et al. Urban heat island-induced increases in evapotranspirative demand [J]. Geophysical Research Letters, 2017,44(2):873–881. |
|
|
|