|
|
Constructing soil cadmium discharge inventory for source analysis—a case study in copper smelter |
SHENG Yi1, XUE Wei-zhen2, YING Di-wen2, WU Jun1, LI Ye3, SHI Pei-li4, ZHAO Ling2 |
1. College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China; 2. School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; 3. Key Laboratory of Geographic Information Science, Ministry of Education, East China Normal University, Shanghai 200241, China; 4. Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China |
|
|
Abstract This study took a copper smelting plant in East China as an example, and used the “four emission pathways” functions to quantitatively describe the flux of Cd entering soil through “waste gas deposition, wastewater discharge, solid waste leaching, and run-off and leakage”. Combining the waste gas deposition model (AERMOD), the distribution of Cd carried by waste gas was calculated inside and outside the site boundary, and the contribution of each pathway to soil Cd pollution in the site was clarified. The results indicated that during the production period from 2000 to 2002, Cd was mainly emitted through waste gas deposition (1411kg, 50.05%) and solid waste leaching (1327kg, 47.05%), while the impact of wastewater and run-off as well as leakage pathways was small (a total of 81.74kg, 2.90%). However, only 0.68kg Cd in the waste gas was deposited inside the site, which only account for 0.05% of the overall Cd pollution in the soil of this site, while soil Cd in the site was mainly contributed by the solid waste leaching pathway. The spatial discharge inventory showed that soil Cd pollution was mainly distributed in production areas such as the stacking area and waste gas treatment area. The research results have important significance for strengthening the fine source control of the smelting industry, and the method proposed in this article can be extended to the source analysis of other industries and multiple pollutants.
|
Received: 13 January 2024
|
|
Corresponding Authors:
赵玲,研究员,wszhaoling@sjtu.edu.cn
E-mail: wszhaoling@sjtu.edu.cn
|
|
|
|
[1] 环境保护部,国土资源部.全国土壤污染状况调查公报[J]. 环境教育, 2014,(6):8-10. Ministry of Environmental Protection, Ministry of Land and Resources. National soil pollution survey bulletin [J]. Environmental Education, 2014,(6):8-10. [2] Anaman R, Peng C, Jiang Z, et al.. Identifying sources and transport routes of heavy metals in soil with different land uses around a smelting site by GIS based PCA and PMF [J]. Science of the Total Environment, 2022,823:153759. [3] 杨进,彭昌盛,伍斌,等.东北地区关闭搬迁企业遗留地块土壤污染特征[J]. 中国环境科学, 2023,43(8):4137-4146. Yang J, Peng C S, Wu B, et al. Characterization of soil contaminations in brownfield sites in Northeast China [J]. China Environmental Science, 2023,43(8):4137-4146. [4] Han G, Wang J, Sun H, et al. A critical review on the removal and recovery of hazardous Cd from Cd-containing secondary resources in Cu-Pb-Zn smelting processes [J]. Metals, 2022,12(11):1846. [5] Balladares E, Kelm U, Helle S, et al. Chemical-mineralogical characterization of copper smelting flue dust [J]. DYNA, Universidad Nacional De Colombia, 2014,81(186):11-18. [6] Yan L, Huang Y, Cui J, et al. Simultaneous As(III) and Cd removal from copper smelting wastewater using granular TiO2 columns [J]. Water Research, Oxford: Pergamon-Elsevier Science Ltd, 2015,68:572-579. [7] Yu B-W, Jin G-Z, Moon Y-H, et al. Emission of PCDD/Fs and dioxin-like PCBs from metallurgy industries in S. Korea [J]. Chemosphere, 2006,62(3):494-501. [8] 钟茂生,彭超,姜林,等.污染场地土壤中Cd人体可给性影响因素及对筛选值的影响[J]. 中国环境科学, 2015,35(7):2217-2224. Zhong M S, Peng C, Jiang L, et al. Factors controlling bioaccessibility of Cd in soils from contaminated sites and its implication on soil screening values [J]. China Environmental Science, 2015,35(7):2217-2224. [9] Xing W, Luo Y, Wu L, et al. Spatial distribution of PAHs in a contaminated valley in Southeast China [J]. Environmental Geochemistry and Health, 2006,28(1):89-96. [10] Sun Y, Zhou Q, Xie X, et al. Spatial, sources and risk assessment of heavy metal contamination of urban soils in typical regions of Shenyang, China [J]. Journal of Hazardous Materials, 2010,174(1-3):455-462. [11] 杨昱莹,刘亮,陈明,等.长三角地区南京市表土重金属污染特征及源解析[J]. 中国环境科学, 2024,44(7):3910-3918. Yang, Y Y, Liu L, Chen M, Characterization and source analysis of topsoil heavy metal pollution in Nanjing, Yangtze River Delta Region [J/OL]. China Environmental Science, 2024,44(7):3910-3918. [12] 杨晨晨,王卓微,李睿,等.蕉门水道沉积物重金属分布特征及定量源解析[J]. 中国环境科学, 2023,43(9):4819-4827. Yang C C, Wang Z W, Li R, et al. Spatial distribution and quantitative source identification of heavy metals in sediment cores of Jiaomen Waterway [J]. China Environmental Science, 2023,43(9):4819-4827. [13] 刘小莉,高文华,魏婷,等.青藏高原地表土壤重金属元素组成分布特征及其影响因素研究[J]. 中国环境科学, 2024,44(4):2198-2207. Liu X L, Gao W H, Wei T, et al. Distribution characteristics of heavy metals in Tibetan Plateau surface soils and its significance for source tracing of heavy metal deposition in surrounding glacial areas [J]. China Environmental Science, 2024,44(4):2198-2207. [14] Zhang H, Yao Q, Zhu Y, et al. Review of source identification methodologies for heavy metals in solid waste [J]. Chinese Science Bulletin, 2013,58(2):162-168. [15] 刘楠,唐莹影,陈盟,等.基于APCS-MLR和PMF的铅锌矿流域土壤重金属来源解析[J]. 中国环境科学, 2023,43(3):1267-1276. Liu N, Tang Y, Chen M, et al. Identification of sources of heavy metals in soil in a lead-zinc mining area based on APCS-MLR and PMF [J]. China Environmental Science, 2023,43(3):1267-1276. [16] 张云霞,郭朝晖,肖顺勇,等.基于神经网络和GIS的耕地土壤铊含量分布及其驱动因素[J]. 中国环境科学, 2024,44(1):269-277. Zhang Y X, Guo Z H, Xiao S Y, et al. Distribution and driving factors of thallium in cultivated soil based on NNET and GIS [J]. China Environmental Science, 2024,44(1):269-277. [17] Xue W, Ying D, Li Y, et al. Method for establishing soil contaminant discharge inventory: An arsenic-contaminated site case study [J]. Environmental Research, 2023,227:115700. [18] HJ 25.1-2019建设用地调查技术导则[S]. HJ 25.1-2019 Technical guidelines for investigation on soil contamination of land for construction [S]. [19] HJ 25.2-2019建设用地土壤污染风险管控和修复监测技术导则[S]. HJ 25.2-2019 Technical guidelines for monitoring during risk control and remediation of soil contamination of land for construction [S]. [20] GB/T 22105.2-2008土壤质量总汞、总砷、总铅的测定原子荧光法第2部分:土壤中总砷的测定[S]. GB/T 22105.2-2008 Soil quality-Analysis of total mercury, arsenic and lead contents-Atomic fluorescence spectrometry-Part 2: Analysis of total arsenic contents in soils [S]. [21] GB/T 17141-1997土壤质量铅、镉的测定石墨炉原子吸收分光光度法[S]. GB/T 17141-1997 Soil quality--Determination of lead, cadmium- Graphite furnace atomic absorption spectrophotometry [S]. [22] HJ 491-2019土壤和沉积物铜、锌、铅、镍、铬的测定火焰原子吸收分光光度法[S]. HJ 491-2019 Soil and sediment-Determination of copper, zinc, lead, nickel and chromium-Flame atomic absorption spectrophotometry [S]. [23] GB/T 22105.1-2008土壤质量总汞、总砷、总铅的测定原子荧光法第1部分:土壤中总汞的测定[S]. GB/T 22105.1-2008 Soil quality-Analysis of total mercury, arsenic and lead contents-Atomic fluorescence spectrometry-Part 1:Analysis of total mercury contents in soils [S]. [24] HJ 687-2014固体废物六价铬的测定碱消解火焰原子吸收分光光度法[S]. HJ 687-2014 Solid waste- Determination of Hexavalent Chromium - by Alkaline digestion/flame atomic absorption spectrophotometic [S]. [25] HJ/T 166-2004土壤环境监测技术规范[S]. HJ/T 166-2004 The Technical specification for soil environmental monitoring [S]. [26] 关于印发《重点行业企业用地调查质量保证与质量控制技术规定(试行)》的通知[Z]. [27] 陈雅丽,翁莉萍,马杰,等.近十年中国土壤重金属污染源解析研究进展[J]. 农业环境科学学报, 2019,38(10):2219-2238. Chen Y L, Weng L P, Ma J, et al. Review on the last ten years of research on source identification of heavy metal pollution in soils [J]. Journal of Agro-Environment Science, 2019,38(10):2219-2238. [28] 国务院第一次全国污染源普查领导小组办公室关于印发《第一次全国污染源普查工业污染源产排污系数手册》的通知[Z]. [29] 关于发布《排放源统计调查产排污核算方法和系数手册》的公告[Z]. [30] GB 50268-2008给水排水管道工程施工及验收规范[S]. GB 50268-2008 Code for construction and accepttance of water and sewerage pipeline works [S]. [31] GB 50141-2008给水排水构筑物工程施工及验收规范[S]. GB 50141-2008 Code for construction and acceptance of water and sewerage structures [S]. [32] HJ/T 169-2018建设项目环境风险评价技术导则[S]. HJ/T 169-2018 Technical guidelines for environmental risk assessment on projects [S]. [33] Li P, Lin C, Cheng H, et al. Contamination and health risks of soil heavy metals around a lead/zinc smelter in southwestern China [J]. Ecotoxicology and Environmental Safety, 2015,113:391-399. [34] 孟晓飞,郭俊娒,杨俊兴,等.河南省典型工业区周边农田土壤重金属分布特征及风险评价[J]. 环境科学, 2021,42(2):900-908. Meng X F, Guo J W, Yang J X, et al. Distribution characteristics and risk assessment of heavy metals in farmland soil around typical industrial areas in Henan Province [J]. Environmental Science, 2021, 42(2):900-908. [35] 黄香,米加,仁珍,等.西藏麦地卡湿地表层沉积物元素分布特征及其污染风险评价[J]. 环境生态学, 2020,2(11):1-6,24. Huang X, Mi J, Ren Z, et al. Distribution characteristics and risk assessment of elements in surface sediments of Maidika Wetland in Tibet [J]. Environmental Ecology, 2020,2(11):1-6,24. [36] Tartakovsky D, Stern E, Broday D M. Dispersion of TSP and PM10 emissions from quarries in complex terrain [J]. Science of the Total Environment, 2016,542:946-954. [37] 欧阳晓光,郭芬.城市垃圾焚烧烟气中重金属的源项解析和干沉降影响研究[J]. 环境科学与管理, 2012,37(12):64-67. OuYang X G, Guo F. Source analysis and dry deposition impact of heavy metals in municipal solid waste incineration flue gas [J]. Environmental Science and Management, 2012,37(12):64-67. [38] 廖祖武.有色冶炼烟尘颗粒物成分解析与化学团聚研究[D]. 长沙:中南大学, 2022. Liao Z W. Analysis of composition and chemical aggregation of dust particles from nonferrous smelting [D]. Changsha: Central South University, 2022. [39] GB 36600-2018土壤环境质量建设用地土壤污染风险管控标准[S]. GB 36600-2018 Soil environmental quality Risk control standard for soil contamination of development land [S]. [40] DB33/T 892-2022建设用地土壤污染风险评估技术导则[S]. DB33/T 892-2022 Technical guidelines for risk assessment of soil contamination of land for construction [S]. [41] 卢小慧,余方中,范一鸣,等.三门峡某铅厂遗留场地土壤重金属空间分布特征及来源解析[J]. 环境科学, 2023,44(3):1646-1656. Lu X H, Yu F Z, Fan Y M, et al. Spatial distribution characteristics and source analysis of heavy metals in a residual site of a lead factory in Sanmenxia [J]. Environmental Science, 2023,44(3):1646-1656. [42] GB/T 4754-2017国民经济行业分类[S]. GB/T 4754-2017 Industrial classification for national economic activities [S]. [43] 王云燕,何紫彤,唐巾尧,等.铜冶炼脱硫石膏渣的环境稳定性与重金属释放机制[J]. 中南大学学报(自然科学版), 2023,54(2):562-576. Wang Y Y, He Z T, Tang J Y, et al. Environmental stability and heavy metal release mechanism of desulfurized gypsum slag from copper smelting [J]. Journal of Central South University (Natural Science Edition), 2023,54(2):562-576. [44] 邵慧琪,张又文,曲琛,等.典型钒矿冶炼厂区域土壤重金属污染及陆生植物富集能力[J]. 工程科学学报, 2020,42(3):302-312. Shao H Q, Zhang Y W, Qu C, et al. Heavy metal pollution and accumulation capacity of terrestrial plants in typical vanadium mining and smelting areas [J]. Journal of Engineering Science, 2020,42(3):302-312. [45] 曾晓娜,贺秋华,吕世豪,等.典型冶炼企业集中区土壤重金属污染分析及风险评价[J]. 有色金属(冶炼部分), 2021,(12):98-104. Zeng X N, He Q H, Lv S H, et al. Analysis and risk assessment of soil heavy metal pollution in concentrated areas of typical smelting enterprises [J]. Nonferrous Metals (Smelting Section), 2021,(12):98-104. [46] Onofrio M, Spataro R, Botta S. Deposition fluxes of PCDD/Fs in the area surrounding a steel plant in northwest Italy [J]. Environmental Monitoring and Assessment, 2014,186(6):3917-3929. [47] 杨丹.铜冶炼过程中金属镉元素的分布及控制工艺探析[J]. 铜业工程, 2022,(1):38-41. Yang D. Distribution and control process analysis of cadmium element in copper smelting process [J]. Copper Engineering, 2022,(1):38-41. [48] 邓家逸,余东,吴昊,等.广西某铜冶炼场地土壤污染特征及源解析[J]. 环境科学学报, 1-10. Deng J Y, Yu D, Wu H, et al. Characteristics and source analysis of soil pollution in a copper smelting site in Guangxi [J]. Journal of Environmental Science, 1-10. [49] 施烈焰,马振波,张得恩,等.黄河流域某铜冶炼场地重金属污染评价及源解析[J]. 中国有色金属学报, 1-19. Shi L Y, Ma Z B, Zhang D E, et al. Evaluation and source analysis of heavy metal pollution in a copper smelting site in the Yellow River Basin [J]. The Chinese Journal of Nonferrous Metals, 1-19. [50] 李娇,滕彦国,吴劲,等.PMF模型解析土壤重金属来源的不确定性[J]. 中国环境科学, 2020,40(2):716-725. Li J, Teng Y G, Wu J, et al. PMF model for analyzing uncertainty of heavy metal sources in soil [J]. China Environmental Science, 2012,32(1):2-8. |
|
|
|