|
|
Pore-scale mechanisms of DNAPL oxidative remediation in a microfluidic device |
WANG Ze-jun, YANG Zhi-bing, HU Ran, CHEN Yi-Feng |
State Key Laboratory of Water Resources Engineering and Management, Key Laboratory of Rock Mechanics in Hydraulic Structural Engineering of the Ministry of Education, School of Water Resources and Hydropower Engineering, Wuhan University, Wuhan 430072, China |
|
|
Abstract To elucidate pore-scale mechanisms governing the coupled process of multiphase flow, chemical reactions, and phase transformations during the oxidation remediation of dense non-aqueous phase liquids (DNAPLs), we conducted 48microfluidic experiments to investigate the trichloroethylene (TCE) oxidation by potassium permanganate (KMnO4). The results show that when KMnO4 concentration exceeded 3g/L, the manganese dioxide (MnO2) solid products during TCE oxidation formed a "solid wall", which hindered the contact between MnO4- and TCE. Under such conditions, the residual TCE oxidation proceeded only via the slow penetration of KMnO4 solution through the MnO2 wall, where limited MnO4- was converted to Mn2+. As Mn2+ diffused out of the MnO2 wall, it was re-oxidized to MnO2 solid phase, creating a negative feedback loop and significantly reducing remediation efficiency. At KMnO4 concentrations below 3g/L, the MnO2 solid products were able to attach to the channel surfaces, permitting continuous reaction between MnO4- and TCE, thereby resulting in a higher remediation efficiency. The introduction of phosphate significantly suppressed the formation of MnO2 solid products and improved remediation efficiency, with an optimal KMnO4 concentration for TCE remediation determined to be 1~2g/L.
|
Received: 25 January 2024
|
|
Corresponding Authors:
杨志兵,教授,zbyang@whu.edu.cn
E-mail: zbyang@whu.edu.cn
|
|
|
|
[1] 郑德凤,赵勇胜,王本德.轻非水相液体在地下环境中的运移特征与模拟预测研究[J]. 水科学进展, 2002,13(3):321-325. Zheng D F, Zhao Y S, Wang B D. Research on the moving behaviors and modeling of light nonaqueous phase liquid in subsurface [J]. Advances in Water Science, 2002,13(3):321-325. [2] 施小清,姜蓓蕾,吴吉春,等.非均质介质中重非水相污染物运移受泄漏速率影响数值分析[J]. 水科学进展, 2012,23(3):376-382. Shi X Q, Jiang B L, Wu J C, et al. Numerical analysis of the effect of leakage rate on dense non-aqueous phase liquid transport in heterogonous porous media [J]. Advances in Water Science, 2012, 23(3):376-382. [3] 李胜,窦智,陈永强,等.基于低场核磁共振的二元结构含水层LNAPL迁移及分布规律研究[J]. 中南大学学报(自然科学版), 2023,54(5):1970-1977. Li S, Dou Z, Chen Y Q, et al. Migration and distribution of LNAPL in binary structure stratum based on low field nuclear magnetic resonance [J]. Journal of Central South University (Science and Technology), 2023,54(5):1970-1977. [4] 潘明浩,时健,左锐,等.水位波动下包气带透镜体影响LNAPL迁移的数值模拟研究[J]. 水文地质工程地质, 2022,49(1):154-163. Pan M H, Shi J, Zuo R, et al. A numerical simulation study of the effect of the vadose zone with lenses on LNAPL migration under the fluctuating water table [J]. Hydrogeology & Engineering Geology, 2022,49(1):154-163. [5] 杨宾,李慧颖,伍斌,等.4种NAPLs污染物在二维砂箱中的指进锋面形态特征研究[J]. 环境科学, 2013,34(4):1545-1552. Yang B, Li H Y, Wu B, et al. Sand box study on fingering front morphology for NAPLs infiltrated in homogeneous porous media [J]. Environmental Science, 2013,34(4):1545-1552. [6] Siegrist R L, Crimi M, Simpkin T J. In situ chemical oxidation for groundwater remediation [M]. New York: Springer Science & Business Media, 2011. [7] Yang Z, Niemi A, Fagerlund F, et al. Effects of single-fracture aperture statistics on entrapment, dissolution and source depletion behavior of dense non-aqueous phase liquids [J]. Journal of Contaminant Hydrology, 2012,133:1-16. [8] 王宁,彭胜,陈家军.蒸汽-空气混合注射修复TCE污染的二维土箱实验研究[J]. 环境科学, 2014,35(7):2785-2790. Wang N, Peng S, Chen J J. Steam and air co-injection in removing TCE in 2D-sand box [J]. Environmental Science, 2014,35(7):2785-2790. [9] 严芳敏,郭明帅,王菲.炭铁材料修复三氯乙烯污染地下水的性能[J]. 中国环境科学, 2024,44(2):825-831. Yan F M, Guo M S, Wang F. The performance of biochar/nZVI composite in remediating trichloroethylene contaminated groundwater [J]. China Environmental Science, 2024,44(2):825-831. [10] 邢志林,石云椿,苏夏,等.微氧环境氯代烃生物降解的研究现状与展望[J]. 中国环境科学, 2023,43(9):4837-4848. Xing Z L, Shi Y C, Su X, et al. The current status and prospects of biodegradation of chlorinated hydrocarbons under micro-aerobic conditions [J]. China Environmental Science, 2023,43(9):4837-4848. [11] 康学远,施小清,史良胜,等.基于集合卡尔曼滤波的多相流模型参数估计——以室内二维砂箱中重质非水相污染物入渗为例[J]. 吉林大学学报(地球科学版), 2017,47(3):848-859. Kang X Y, Shi X Q, Shi L S, et al. Inverse multiphase flow simulation using ensemble kalman filter: application to a 2D sandbox experiment of DNAPL migration [J]. Journal of jilin University (Earth Science Edition), 2017,47(3):848-859. [12] 邓亚平,张烨,施小清,等.非均质裂隙介质中重非水相流体运移[J]. 水科学进展, 2015,26(5):722-730. Deng Y P, Zhang Y, Shi X Q, et al. Study on the migration of dense non-aqueous phase liquids in heterogeneous fractured media [J]. Advances in Water Science, 2015,26(5):722-730. [13] 束善治,梁宏伟,袁勇.轻非水相液体在非均质地层包气带中运移和分布特征数值分析[J]. 水利学报, 2002,11:31-37. Shu S Z, Liang H W, Yuan Y. Numerical analysis of transportation and distribution of light non-aqueous phase liquids in partially saturated heterogeneous soils [J]. Journal of Hydraulic Engineering, 2002,11:31-37. [14] 胡黎明,邢巍巍,吴照群.多孔介质中非水相流体运移的数值模拟[J]. 岩土力学, 2007,5:951-955. Hu L M, Xing W W, Wu Z Q. Numerical simulation of non-aqueous phase liquids migration in porous media [J]. Rock and Soil Mechanics, 2007,5:951-955. [15] Wang Z, Yang Z, Chen Y F. Pore-scale investigation of surfactant-enhanced DNAPL mobilization and solubilization [J]. Chemosphere, 2023,341:140071. [16] 王慧婷,徐红霞,郭琼泽,等.饱和多孔介质中DNAPL污染源区结构及质量溶出[J]. 中国环境科学, 2019,39(8):3474-3483. Wang H T, Xu H X, Guo Q Z, et al. Dense non-aqueous phase liquid source zone architecture and dissolution in saturated porous media [J]. China Environmental Science, 2019,39(8):3474-3483. [17] 黄菀,耿竹凝,李广贺,等.热修复过程中重质非水相液体(DNAPL)共沸实验[J]. 中国环境科学, 2020,40(9):3903-3910. Huang W, Geng Z N, Li G H, et al. Laboratory study on dense non-aqueous phase liquid co-boiling during thermal remediation [J]. China Environmental Science, 2020,40(9):3903-3910. [18] 肖鹏,刘汉乐.饱和砂土中DNAPL污染物迁移过程及数值模拟[J]. 中国环境科学, 2024,44(1):386-395. Xiao P, Liu H L. Transport processes and numerical simulation of DNAPL contaminants in saturated sandy soils. [J]. China Environmental Science, 2024,44(1):386-395. [19] Yuan S, Liao P, Alshawabken A N. Electrolytic manipulation of persulfate reactivity by iron electrodes for trichloroethylene degradation in groundwater [J]. Environmental science & technology, 2014,48(1):656-663. [20] Cheng Z, Gao B, Xu H, et al. Effects of surface active agents on DNAPL migration and distribution in saturated porous media [J]. Science of the Total Environment, 2016,571:1147-1154. [21] Pak T, Luz J R L F L, Tosco T, et al. Pore-scale investigation of the use of reactive nanoparticles for in situ remediation of contaminated groundwater source [J]. Proceedings of the National Academy of Sciences, 2020,117(24):13366-13373. [22] 卢文喜,罗建男,辛欣,等.表面活性剂强化的DNAPLs污染含水层修复过程的数值模拟[J]. 地球科学(中国地质大学学报), 2012, 37(5):1075-1081. Lu W X, Luo J N, Xin X, et al. Numerical simulation of surfactant enhanced aquifer remediation processes at DNAPLs contaminated aquifer [J]. Earth Science (Journal of China University of Geosciences), 2012,37(5):1075-1081. [23] Wang Z, Yang Z, Hu R, et al. Mass transfer during surfactant- enhanced DNAPL remediation: Pore-scale experiments and new correlation [J]. Journal of Hydrology, 2023,621:129586. [24] Wang Z, Yang Z, Fagerlund F, et al. Pore-scale mechanisms of solid phase emergence during DNAPL remediation by chemical oxidation [J]. Environmental Science & Technology, 2022,56(16):11343-11353. [25] Li X D, Schwartz F W. DNAPL mass transfer and permeability reduction during in situ chemical oxidation with permanganate [J]. Geophysical Research Letters, 2004,31(6):1-5. [26] West M R, Grant G P, Gerhard J I, et al. The influence of precipitate formation on the chemical oxidation of TCE DNAPL with potassium permanganate [J]. Advances in Water Resources, 2008,31(2):324-338. [27] West M R, Kueper B H. Numerical simulation of DNAPL source zone remediation with in situ chemical oxidation (ISCO) [J]. Advances in Water Resources, 2012,44:126-139. [28] Freeman F, Kappos J C. Permanganate ion oxidations. 15. Additional evidence for formation of soluble (colloidal) manganese dioxide during the permanganate ion oxidation of carbon-carbon double bonds in phosphate-buffered solutions [J]. Journal of the American Chemical Society, 1985,107(23):6628-6633. [29] Li X D, Schwartz F W. Using phosphate to control the Mn oxide precipitation during in situ chemical oxidation of chlorinated ethylenes by permanganate [M]. Washington: American Chemical Society, 2005. [30] Crimi M, Ko S. Control of manganese dioxide particles resulting from in situ chemical oxidation using permanganate [J]. Chemosphere, 2009,74(6):847-853. [31] Kao C M, Huang K D, Wang J Y, et al. Application of potassium permanganate as an oxidant for in situ oxidation of trichloroethylene- contaminated groundwater: a laboratory and kinetics study [J]. Journal of Hazardous Materials, 2008,153(3):919-927. [32] Loomer D B, Al T A, Banks V J, et al. Manganese valence in oxides formed from in situ chemical oxidation of TCE by KMnO4 [J]. Environmental science & technology, 2010,44(15):5934-5939. [33] 刘洋,谢雯静,郑云松,等.电化学循环井驱动模拟含水层化学氧化降解三氯乙烯[J]. 地学前缘, 2021,28(5):197-207. Liu Y, Xie W J, Zheng Y S, et al. Electrolytic circulation well drives chemical oxidation of TCE in a simulated aquifer. [J]. Earth Science Frontiers, 2021,28(5):197-207. [34] Demiray Z, Akyol N H, Akyol G, et al. Surfactant-enhanced in-situ oxidation of DNAPL source zone: Experiments and numerical modeling [J]. Journal of Contaminant Hydrology, 2023,258:104233. [35] Almpanis A, Gerhard J, Power C. Mapping and monitoring of DNAPL source zones with combined direct current resistivity and induced polarization: a field-scale numerical investigation [J]. Water Resources Research, 2021,57(11):e2021WR031366. [36] Versteeg G F, Van Swaaij W P M. Solubility and diffusivity of acid gases (carbon dioxide, nitrous oxide) in aqueous alkanolamine solutions [J]. Journal of Chemical & Engineering Data, 1988,33(1):29-34. [37] Seyedpour S M, Janmaleki M, Henning C, et al. Contaminant transport in soil: A comparison of the Theory of Porous Media approach with the microfluidic visualization [J]. Science of the total environment, 2019,686:1272-1281. [38] Guo Y, Lou J, Cho J K, et al. Transport of colloidal particles in microscopic porous medium analogues with surface charge heterogeneity: experiments and the fundamental role of single-bead deposition [J]. Environmental Science & Technology, 2020,54(21):13651-13660. [39] Yang J Q, Zhang X, Bourg I C, et al. 4D imaging reveals mechanisms of clay-carbon protection and release [J]. Nature communications, 2021,12(1):622. [40] Zhu X, Wang K, Yan H, et al. Microfluidics as an emerging platform for exploring soil environmental processes: a critical review [J]. Environmental Science & Technology, 2022,56(2):711-731. [41] Kurz D L, Secchi E, Carrillo F J, et al. Competition between growth and shear stress drives intermittency in preferential flow paths in porous medium biofilms [J]. Proceedings of the National Academy of Sciences, 2022,119(30):e2122202119. [42] Huang X, Li Y, Guggenberger G, et al. Direct evidence for thickening nanoscale organic films at soil biogeochemical interfaces and its relevance to organic matter preservation [J]. Environmental Science: Nano, 2020,7(9):2747-2758. [43] 臧潇倩,李哲煜,张笑颜,等.基于微流控芯片的细菌趋化性检测研究进展[J]. 分析化学, 2017,45(11):1734-1744. Zang X Q, Li Z Y, Zhang X Y, et al. Advance in Bacteria Chemotaxis on Microfluidic Devices [J]. Chinese Journal of Analytical Chemistry, 2017,45(11):1734-1744. |
|
|
|