|
|
Black carbon during haze processes impact on aerosol scattering hygroscopic growth |
TONG Jing-zhe1,2, MI Jia-yuan1, TU Chao-yong1, LI Na1, LI Zong-hao2, DENG Ye3, NI Chang-jian1 |
1. Chengdu Plain Urban Meteorology and Environment Observation and Research Station of Sichuan Province, College of Atmospheric Science, Chengdu University of Information Technology, Chengdu 610225, China; 2. Liaoning Provincial Meteorological Equipment Support Center, Shenyang 110166, China; 3. Chengdu Academy of Environmental Sciences, Chengdu 610072, China |
|
|
Abstract Based on the hourly observed “dry” aerosol scattering coefficient, aerosol absorption coefficient, and the environmental meteorological monitoring data, and the retrieved aerosol particle size hygroscopic growth factor (Gf) from October to December 2017 in Chengdu, the statistical characteristics of black carbon concentration (CBC) were analyzed under four kinds of haze intensity conditions. Besides, the influence mechanism for CBC on the aerosol scattering hygroscopic growth was investigated using the aid of Generalized Additive Model (GAM). The results show that: (1) CBC obeyed lognormal distribution under slight, mild, moderate, and severe haze conditions. The averaged value of CBC increased but the variation coefficient of CBC decreased with increasing haze intensity. (2) CBC showed nonlinear negative correlations with Gf, and nonlinear positive correlations with CPM2.5/PM10 (mass concentration ratio between fine particulate matter and coarse particulate matter) (passing the α=0.01 significant test). Haze development intensified the downward trend of Gf with CBC and reduced the upward trend of CPM2.5/PM10 with CBC. (3) There were significant interactions between CPM2.5/PM10and Gf (passing the α=0.001 significant test). The bivariate GAM model with Gf and CPM2.5/PM10 could better characterize the variation on f.
|
Received: 15 February 2024
|
|
|
|
|
[1] Klimont Z, Kupiainen K, Heyes C, et al. Global anthropogenic emissions of particulate matter including black carbon [J]. Atmospheric Chemistry and Physics, 2017,17(14):8681-8723. [2] 朱晓晶,钱岩,李晓倩,等.黑碳气溶胶的研究现状:定义及对健康、气候等的影响[J]. 环境科学研究, 2021,34(10):2536-2546. Zhu X J, Qian Y, Li X Q, et al. Research Status of Black Carbon Aerosol: Definitions and Impacts on Health,Climate and Other Welfare [J]. Research of Environmental Sciences, 2021,34(10):2536-2546. [3] Ji D, Li L, Pang B, et al. Characterization of black carbon in an urban-rural fringe area of Beijing [J]. Environmental Pollution, 2017, 223(APR.):524-534. [4] Chameides W L, Bergin M. Soot takes center stage [J]. Science, 2002,297(5590):2214-2215. [5] Ding A J, Huang X, Nie W, et al. Enhanced haze pollution by black carbon in megacities in China [J]. Geophysical Research Letters, 2016, 43(6):2873-2879. [6] Griggs D J, Noguer M. Climate Change 2001: The Scientific Basis. Contribution of Working Group Ⅰ to the Third Assessment Report of the Intergovernmental Panel on Climate Change [J]. Weather, 2002, 57(8):267-269. [7] Liu D, Quennehen B, Darbyshire E, et al. The importance of Asia as a source of black carbon to the European Arctic during springtime 2013[J]. Atmospheric Chemistry and Physics, 2015,15(20):11537-11555. [8] 汤洁,温玉璞,周凌晞,等.中国西部大气清洁地区黑碳气溶胶的观测研究[J]. 应用气象学报, 1999,(2):33-43. Tang J, Wen Y P, Zhou L X, et al. Observational Study of Black Carbon in Clean air Area of Western China [J]. Journal of Applied Meteorological Science, 1999,(2):33-43. [9] 刘晨曦,蒋梦姣,吴昊,等.青藏高原瓦里关站黑碳气溶胶长期演变特征及来源分析[J].气象学报, 2023,81(3):469-477. Liu C X, Jiang M J, Wu H, et al. Long-term evolution and sources of the black carbon at Waliguan station over the Qinghai-Tibetan Plateau [J]. Acta Meteorologica Sinica, 2023,81(3):469-477. [10] 安林昌,孙俊英,张养梅,等.天津武清地区单颗粒黑碳气溶胶特征观测分析[J]. 应用气象学报, 2011,22(5):577-583. An L C, Sun J Y, Zhang Y M, et al. Characteristics of Black Carbon at Wuqing Observed by Single Particle Soot Photometer [J]. Journal of Applied Meteorological Science, 2011,22(5):577-583. [11] 孙欢欢,倪长健,崔蕾.成都市黑碳气溶胶污染特征及与气象因子的关系[J]. 环境工程, 2016,34(6):119-124,129. Sun H H, Ni C J, Cui L. Characteristics of Black Carbon Aerosol Pollution in Chengdu and the Relationship Between Meteorological Factors [J]. Environmental Engineering, 2016,34(6):119-124,129. [12] 谭天怡,郭松,吴志军,等.老化过程对大气黑碳颗粒物性质及其气候效应的影响[J]. 科学通报, 2020,65(36):4235-4250. Tan T Y, Guo S, Wu Z J, et al. Impact of aging process on atmospheric black carbon aerosol properties and climate effects [J]. Chinese Science Bulletin, 2020,65(36):4235-4250. [13] Homann K H. Fullerenes and soot formation—new pathways to large particles in flames [J]. Angewandte Chemie International Edition, 1998,37(18):2434–2451. [14] Khalizov A F, Zhang R, Zhang D, et al. Formation of highly hygroscopic soot aerosols upon internal mixing with sulfuric acid vapor [J]. Journal of Geophysical Research, 2009,114(5):1-15. [15] Tritscher T, Jurányi Z, Martin M, et al. Changes of hygroscopicity and morphology during ageing of diesel soot [J]. Environmental Research Letters, 2011,6(3):329-346. [16] 佟景哲,倪长健,杜云松,等.成都气溶胶散射吸湿增长因子多变量影响分析[J]. 生态与农村环境学报, 2022,(5):636-644. Tong J Z, Ni C J, Du Y S, et al. Impact Analysis of Multivariable of Aerosol Scattering Hygroscopic Growth Factor in Chengdu [J]. Journal of Ecology and Rural Environment, 2022,(5):636-644. [17] 佟景哲,倪长健,米家媛,等.气溶胶散射吸湿增长因子的BP神经网络模型[J]. 环境工程, 2023,41(7):131-137,165. Tong J Z, Ni C J, Mi J Y, et al. A BP Neural Network Model of Aerosol Scattering Hygroscopic Growth Factor [J]. Environmental Engineering, 2023,41(7):131-137,165. [18] 米家媛,佟景哲,倪长健,等.气溶胶粒径吸湿增长多因素影响的GAM模型[J]. 环境科学与技术, 2023,46(6):128-135. Mi J Y, Tong J Z, Ni C J, et al. GAM Model for Multi-factorial Effects on Aerosol Particle Size Hygroscopic Growth [J]. Environmental Science & Technology, 2023,46(6):128-135. [19] 米家媛,李娜,佟景哲,等.气溶胶粒径吸湿增长因子的机器学习模型[J]. 中国环境科学, 2024,44(2):638-645. Mi J Y, Li N, Tong J Z, et al. Machine learning models for aerosol particle size hygroscopic growth factor [J]. China Environmental Science, 2024,44(2):638-645. [20] 权建农,徐祥德,贾星灿,等.影响我国霾天气的多尺度过程[J]. 科学通报, 2020,65(9):810-824. Quan J N, Xu X D, Jia X C, et al. Multi-scale processes in severe haze events in China and their interactions with aerosols: Mechanisms and progresses [J]. Chinese Science Bulletin, 2020,65(9):810-824. [21] 楚碧武,马庆鑫,段凤魁,等.大气“霾化学”:概念提出和研究展望[J]. 化学进展, 2020,32(1):1-4. Chu B W, Ma Q X, Duan F K, et al. Atmospheric“Haze Chemistry”: Concept and Research Prospects [J]. Progress in Chemistry, 2020, 32(1):1-4. [22] QX/T 113-2010霾的观测和预报等级[S]. QX/T 113-2010 Observation and forecast levels of haze [S]. [23] 佟景哲,米家媛,倪长健,等.气溶胶散射吸湿增长因子对霾强度变化的响应特征[J]. 生态与农村环境学报, 2023,39(8):1051-1058. Tong J Z, Mi J Y, Ni C J, et al. Characteristics of Aerosol Scattering Hygroscopic Growth Factor under Different Haze Intensities [J]. Journal of Ecology and Rural Environment, 2023,39(8):1051-1058. [24] 贺祥,林振山.基于GAM模型分析影响因素交互作用对PM2.5浓度变化的影响[J]. 环境科学, 2017,38(1):22-32. He X, Lin Z S. Interactive Effects of the Influencing Factors on the Changes of PM2.5 Concentration Based on GAM Model [J]. Environmental Science, 2017,38(1):22-32. [25] 傅刚,李晓岚,魏娜.大气能见度研究[J]. 中国海洋大学学报(自然科学版), 2009,39(5):855-862. Fu G, Li X L, Wei N. Review on the Atmospheric Visibility Research [J]. Periodical of Ocean University of China, 2009,39(5):855-862. [26] 吴兑,毛节泰,邓雪娇,等.珠江三角洲黑碳气溶胶及其辐射特性的观测研究[J]. 中国科学(D辑:地球科学), 2009,39(11):1542-1553. Wu D, Mao J T, Deng X J, et al. Black carbon aerosols and their radiative properties in the Pearl River Delta region [J]. Science in China (Series D), 2009,39(11):1542-1553. [27] Bergstrom R W, RUSSELL P B, HIGNETT P. Wavelength dependence of the absorption of black carbon particles: Predictions and results from the TARFOX experiment and implications for the aerosol single scattering albedo [J]. Journal of the Atmospheric Sciences, 2002,59(3): 567-577. [28] 伯广宇,刘东,吴德成,等.双波长激光雷达探测典型雾霾气溶胶的光学和吸湿性质[J]. 中国激光, 2014,41(1):207-212. Bo G Y, Liu D, Wu D C, et al. Two-Wavelength Lidar for Observation of Aerosol Optical and Hygroscopic Properties in Fogand Haze Days [J]. Chinese Journal of Lasers, 2014,41(1):207-212. [29] Bodhaine B A. Aerosol absorption measurements at Barrow, Mauna Loa and the south pole [J]. Journal of Geophysical Research, 1995, 100(D5):8967-8975. [30] Hodkinson R J. Calculations of color and visibility in urban atmospheres polluted by gaseous NO2 [J]. International Journal of Air Pollution, 1966,(10)137-144. [31] Penndorf R. Tables of the Refractive Index for standard air and the rayleigh scattering coefficient for the spectral region between 0.2 and 20.0μ and their application to atmospheric optics [J]. Journal of the Optical Society of America, 1957,47(2):176-182. [32] 张智察,倪长健,邓也,等.免疫进化算法反演均匀混合气溶胶吸湿增长因子[J]. 中国环境科学, 2020,40(3):1008-1015. Zhang Z C, Ni C J, Deng Y, et al. Retrieval of hygroscopic growth factorof uniformly mixedaerosol particles based on immune evolution algorithm [J]. China Environmental Science, 2020,40(3):1008-1015. [33] Chen J, Zhao C S, Ma N, et al. A parameterization of low visibilities for hazy days in the North China Plain [J]. Atmospheric Chemistry and Physics, 2012,12(11):4935–4950. [34] 张智察,倪长健,张城语,等.气溶胶粒径吸湿增长与散射吸湿增长的关系[J]. 中国环境科学, 2020,40(12):5198-5204. Zhang Z C, Ni C J, Zhang C Y, et al. Relationship between particle size hygroscopic growth and scattering hygroscopic growth [J]. China Environmental Science, 2020,40(12):5198-5204. [35] 张智察,倪长健,赵军平,等.耦合气溶胶双参数化方案的大气能见度数值改进算法[J]. 中国环境科学, 2021,41(11):5009-5018. Zhang Z C, Ni C J, Zhao J P, et al. An improved numerical algorithm for simulating atmosphere visibility by coupling two aerosol parameterization schemes [J]. China Environmental Science, 2021,41(11):5009-5018. [36] 张智察,倪长健,汤津赢,等.“干”气溶胶等效复折射率与其质量浓度指标的相关性研究[J]. 光学学报, 2019,39(5):17-24. Zhang Z C, Ni C J, Tang J Y, et al. Correlation Between Equivalent Complex Refraction Index of “Dry” Aerosol and Its Mass Concentration Index [J]. Acta Optica Sinica, 2019,39(5):17-24. [37] 刘凡,谭钦文,江霞,等.成都市冬季相对湿度对颗粒物浓度和大气能见度的影响[J]. 环境科学, 2018,39(4):1466-1472. Liu F, Tan Q W, Jiang X, et al. Effect of Relative Humidity on Particulate Matter Concentration and Visibility During Winter in Chengdu [J]. Environmental Science, 2018,39(4):1466-1472. |
|
|
|