|
|
The relationship of typical grassland species-area based on drone and ground surveys |
ZHU Sa-ning1,2, GAO Ji-xi2, WAN Hua-Wei2, YOU Chun-he2, YANG Xue3, GUO Yu-tong1,2, ZHU Chen-jia1,2, LV Na2 |
1. Institute of Ecology, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; 2. Satellite Application Center for Ecology and Environment, Ministry of Ecology and Environment/State Environmental Protection Key Laboratory of Satellite Remote Sensing, Beijing 100094, China; 3. School of Grassland Science, Beijing Forestry University, Beijing 100083, China |
|
|
Abstract This study focuses on the typical grasslands of Hulunbuir City as the research subject, conducting a systematic evaluation of the differences between traditional ground quadrat surveys and unmanned aerial vehicle (UAV) surveys of grassland plant species. This was achieved by investigating and analyzing the relationship between quadrat area and the number of species within those quadrats. The study determined the minimum survey areas for both ground and UAV surveys in typical grasslands. The findings are as follows: 1) The number of species in typical grasslands has a nonlinear relationship with the survey area, and the "species-area" relationship can be described by the model S=aln(bA+1), where S represents the number of species, A is the area, and a and b are constants. Using the combined sampling method, at least 8 1m2 small quadrats should be included to represent 80% of the species. Based on the nested sampling method, the minimum survey area required is 8.63m2; 2) For typical grasslands, the average species discovery rate of UAV surveys was 81.7% compared to traditional ground survey methods. UAVs can serve as an auxiliary tool for ground surveys to enhance survey efficiency; 3) In monitoring species within typical grasslands, one or two combined quadrats can be chosen, supplemented with 4 to 5 random shots using a UAV. This approach can identify 84.7% to 88.3% of the total number of species in typical grasslands. Compared to the traditional method of conducting 3 to 5 repeated quadrat surveys, this method offers stronger representativeness and higher work efficiency.
|
Received: 10 February 2024
|
|
|
|
|
[1] 张彪.羊草草原物种组成对温度和降水变化响应的模型模拟研究[D]. 北京:中国科学院大学, 2015. Zhang B. Modeling the Response of Species Composition in Leymus chinensis Grasslands to Temperature and Precipitation Changes [D]. Beijing: University of Chinese Academy of Sciences, 2015. [2] 山丹.呼伦贝尔草原生态系统对气候和放牧作用的时空响应[D]. 北京:中国林业科学研究院, 2020. Shan D. Spatiotemporal Response of the Hulun Buir Grassland Ecosystem to Climate and Grazing [D]. Beijing: Chinese Academy of Forestry, 2020. [3] 任继周.草业科学研究方法[M]. 北京:中国农业出版社, 1998:1-16. Ren J Z. Research Methods in Grassland Science [M]. Beijing: China Agriculture Press, 1998:1-16. [4] 任继周.草业科学概论[M]. 北京:科学出版社, 2014:146-159. Ren J Z. Introduction to Grassland Science [M]. Beijing: Science Press, 2014:146-159. [5] 许鹏.草地调查规划学[M]. 北京:中国农业出版社, 1994:133-137. Xu P. Grassland Survey and Planning [M]. Beijing: China Agriculture Press, 1994:133-137. [6] NY/T2998-2016草地资源调查技术规程[S]. NY/T2998-2016 Technical Regulations for Grassland Resource Survey [S]. [7] 马克平.大型固定样地:森林生物多样性定位研究的平台[J]. 植物生态学报, 2008,32(2):237. Ma K P. Large-scale Permanent Plots: A Platform for Positioning Research on Forest Biodiversity [J]. Acta Phytoecologica Sinica, 2008,32(2):237. [8] 徐学红,王巍伟,米湘成,等.中国森林生物多样性监测网络(CForBio):二十年进展与展望[J]. 生物多样性, 2023,31(12):23354. Xu X H, Wang W W, Mi X C, et al. China Forest Biodiversity Monitoring Network (CForBio): Twenty Years of Progress and Prospects [J]. Biodiversity Science, 2023,31(12):23354. [9] 万宏伟,潘庆民,白永飞.中国草地生物多样性监测网络的指标体系及实施方案[J]. 生物多样性, 2013,21(6):639-650. Wan H W, Pan Q M, Bai Y F. Indicator System and Implementation Plan for China Grassland Biodiversity Monitoring Network [J]. Biodiversity Science, 2013,21(6):639-650. [10] 方精云,王襄平,沈泽昊,等.植物群落清查的主要内容、方法和技术规范[J]. 生物多样性, 2009,17(6):533-548. Fang J Y, Wang X P, Shen Z H, et al. Main Contents, Methods, and Technical Standards for Plant Community Surveys [J]. Biodiversity Science, 2009,17(6):533-548. [11] 郭庆华,胡天宇,姜媛茜,等.遥感在生物多样性研究中的应用进展[J]. 生物多样性, 2018,26(8):789-806. Guo Q H, Hu T Y, Jiang Y Q, et al. Advances in the Application of Remote Sensing in Biodiversity Research [J]. Biodiversity Science, 2018,26(8):789-806. [12] Hodgson J C, Mott R, Baylis S M, et al. Drones count wildlife more accurately and precisely than humans [J]. Methods Ecol Evol., 2018,9(1):1160–1167. [13] Veras H F P, Ferreira M P, Neto E M D C, et al. Fusing multi-season UAS images with convolutional neural networks to map tree species in Amazonian forests [J]. Ecological informatics: an international journal on ecoinformatics and computational ecology, 2022,71(1):10815-10824. [14] 戚桂美,郁志宏,单艳敏,等.基于无人机影像与OBIA-CFS算法的荒漠草原鼠洞斑块识别[J\OL]. 草业科学.http://kns.cnki.net/kcms/detail/62.1069.S.20231109.1338.002.html.2023-11-10/2024-03-17. Qi G M, Yu Z H, Shan Y M, et al. Patch Recognition of Desert Grassland Rodent Burrows Based on UAV Imagery and OBIA-CFS Algorithm [J\OL]. Grassland Science. http://kns.cnki.net/kcms/detail/62.1069.S.20231109.1338.002.html.2023-11-10/2024-03-17. [15] 俞静,张世文,芮婷婷,等.基于无人机遥感的多特征组矿区草本植物地上生物量反演[J]. 草业科学, 2024,41(1):35-48. Yu J, Zhang S W, Rui T T, et al. Aboveground Biomass Inversion of Herbaceous Plants in Mining Areas Based on UAV Remote Sensing [J]. Grassland Science, 2024,41(1):35-48. [16] 李朝.基于无人机图像的草地鼠洞检测方法研究[D]. 呼和浩特:内蒙古农业大学, 2023. Li Z. Research on Grassland Rodent Burrow Detection Methods Based on UAV Imagery [D]. Hohhot: Inner Mongolia Agricultural University, 2023. [17] 花蕊,包达尔罕,董瑞,等.基于无人机遥感的天然草原鼠害发生面积调查方法研究[J]. 草业学报, 2023,32(5):71-82. Hua R, Bao D E H, Dong R, et al. Research on the Investigation Method of Natural Grassland Rodent Pest Occurrence Area Based on UAV Remote Sensing [J]. Acta Agrestica Sinica, 2023,32(5):71-82. [18] 洪海岳.1970~2020年陈巴尔虎旗气候季节特征浅析[J]. 农业灾害研究, 2021,11(10):83-84. Hong H Y. A Brief Analysis of the Seasonal Climatic Characteristics of Chen Barag Banner from 1970 to 2020[J]. Journal of Agro-Disaster Research, 2021,11(10):83-84. [19] 张雨斯,包玉海,贺忠华.1990~2021年内蒙古遥感生态环境质量变化及趋势分析--以呼伦贝尔市陈巴尔虎旗为例[J]. 干旱区研究, 2023,40(2):326-336. Zhang Y S, Bao Y H, He Z H. Analysis of Ecological Environment Quality Changes and Trends in Inner Mongolia from 1990to 2021: A Case Study of Chen Barag Banner in Hulunbuir City [J]. Arid Zone Research, 2023,40(2):326-336. [20] 孙双红,朱宾宾,李艳红,等.呼伦贝尔草原主要群丛的调查研究[J]. 草学, 2020,(1):42-48. Sun S H, Zhu B B, Li Y H, et al. Investigation and Study of the Main Clusters in the Hulunbuir Grassland [J]. Herbology, 2020,(1):42-48. [21] 唐志尧,乔秀娟,方精云.生物群落的种-面积关系[J]. 生物多样性, 2009,17(6):549-559. Tang Z Y, Qiao X J, Fang J Y. Species-Area Relationships in Biological Communities [J]. Biodiversity Science, 2009,17(6):549-559. [22] Scheiner S M. Six types of species–area curves [J]. Global Ecology and Biogeography, 2003,12(1):441-447. [23] Akaike H. Information theory and an extension of the maximum likelihood principle [C]. In: 2nd International Symposium on Information Theory, 1973:267-281. [24] 杨福芹,冯海宽,李振海,等.基于赤池信息量准则的冬小麦叶面积指数高光谱估测[J]. 农业工程学报, 2016,32(3):163-168. Yang F Q, Feng H K, Li Z H, et al. Hyperspectral Estimation of Winter Wheat Leaf Area Index Based on Akaike’s Information Criterion [J]. Transactions of the Chinese Society of Agricultural Engineering, 2016,32(3):163-168. [25] Schwarz G. Estimating the dimension of a model [J]. The Annals of Statistics, 1978,6(2):461-464. [26] 辛晓平.呼伦贝尔草原植物图鉴[M]. 北京:科学出版社,2019:215-238. Xin X P. Plant Atlas of Hulunbuir Grassland [M]. Beijing: Science Press, 2019:215-238. [27] 董世魁,汤琳,王学霞,等.青藏高原高寒草地植物多样性测定的最小样地面积[J]. 生物多样性, 2013,21(6):651-657. Dong S K, Tang L, Wang X X, et al. Determination of the Minimum Plot Area for Plant Diversity in the Alpine Meadows of the Qinghai-Tibet Plateau [J]. Biodiversity Science, 2013,21(6):651-657. [28] 刘灿然,马克平,于顺利,等.北京东灵山地区植物群落多样性研究Ⅶ.几种类型植物群落临界抽样面积的确定[J]. 生态学报, 1998, 18(1):17-25. Liu C R, Ma K P, Yu S L, et al. Studies on Plant Community Diversity in the Dongling Mountain Area of Beijing VII. Determination of Critical Sampling Areas for Several Types of Plant Communities [J]. Acta Ecologica Sinica, 1998,18(1):17-25. [29] Jan L, Jan ü. Species-area curve, life history strategies, and succession: a field test of relationships [J]. Vegetatio, 1989,83(1):249-257. [30] Barkman J J. A critical evaluation of minimum area concepts [J]. Vegetatio, 1989,85(1):89-104. [31] 白慧敏.不同空间小尺度下三种类型草地群落的空间异质性研究[D]. 杨凌:西北农林科技大学, 2019. Bai H M. Study on Spatial Heterogeneity of Three Types of Grassland Communities at Different Small Spatial Scales [D]. Yangling: Northwest A&F University, 2019. [32] 赵鸿怡,崔媛,郑秋竹,等.香格里拉2种典型高寒草甸植物丰富度最小取样面积研究[J]. 西南林业大学学报(自然科学), 2021,41(1): 125-132. Zhao H Y, Cui Y, Zheng Q Z, et al. Study on the Minimum Sampling Area for Plant Richness in Two Types of Typical Alpine Meadows in Shangri-La [J]. Journal of Southwest Forestry University (Natural Science Edition), 2021,41(1):125-132. [33] He F L, Pierre L. On species-area relations [J]. American Naturalist, 1996,148(4):719-737. [34] Williamson M, Gaston KJ .The lognormal distribution is not an appropriate null hypothesis for the species–abundance distribution [J]. Journal of Animal Ecology, 2005,74(3):409-422. [35] 安惠芳.亚高寒草甸植物群落物种-面积关系的研究[D]. 兰州:兰州大学, 2011. An H F. Study on Species-Area Relationships in Subalpine Meadow Plant Communities [D]. Lanzhou: Lanzhou University, 2011. [36] 张忠华,胡刚,祝介东,等.喀斯特森林土壤养分的空间异质性及其对树种分布的影响[J]. 植物生态学报, 2011,35(10):1038-1049. Zhang Z H, Hu G, Zhu J D, et al. Spatial Heterogeneity of Soil Nutrients in Karst Forests and Its Effect on Tree Species Distribution [J]. Acta Phytoecologica Sinica, 2011,35(10):1038-1049. [37] Stohlgren T J, Chong G W, Kalkhan M A, et al. Multiscale sampling of plant diversity: effects of minimum mapping unit size [J]. Ecological Applications, 1997,7(3):1064-1074. [38] 刘彤,崔运河,翟伟,等.莫索湾南缘沙漠植物群落多样性抽样方法的研究[J]. 干旱区地理, 2006,(3):367-374. Liu T, Cui Y H, Zhai W, et al. Study on the Sampling Methods of Desert Plant Community Diversity in the Southern Margin of Mosuo Bay [J]. Arid Land Geography, 2006,(3):367-374. [39] 杨持,宝荣.羊草草原种群分布格局的最适取样面积[J]. 生态学报, 1986,(4):324-329. Yang C, Bao R. Optimal Sampling Area for the Study of Leymus chinensis Population Distribution Patterns in the Grassland [J]. Acta Ecologica Sinica, 1986,(4):324-329. [40] 马海霞,张德罡,杜凯,等.高寒草甸群落调查最小样方面积和最小样方数研究[J]. 草原与草坪, 2020,40(4):40-46. Ma H X, Zhang D G, Du K, et al. Study on the Minimum Sample Plot Area and Minimum Number of Sample Plots for Investigation of Alpine Meadow Communities [J]. Grassland and Turf, 2020,40(4): 40-46. |
|
|
|