|
|
Effects of eggshell microcarriers on the rapid cultivation of nitrifying granular sludge |
JIANG Kuan-sheng1, TANG Hao-ting1, LONG Jing1, LI Ming-jun1, ZHANG Liang-wei1, ZHOU Han1, ZHAO Wei1, LIU Wen-ru1,2,3 |
1. School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; 2. National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou 215009, China; 3. Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou 215009, China |
|
|
Abstract The influence of adding eggshell microcarriers on the rapid cultivation of nitrifying granular sludge was investigated in a continuous flow gas-lift internal circulation reactor. The results showed that the reactor (R2) with the addition of 0.5g/L eggshell microcarriers (75μm) achieved sludge granulation within one month, which was 1~2weeks earlier compared to the control (R1). Furthermore, the resulting granular sludge in R2 exhibited higher mixed liquor volatile suspended solids (MLVSS) (R1=1.7g/L, R2=2.2g/L), Tightly Bound-EPS (TB-EPS) content (R1=97.65mg/gVSS, R2=136.29mg/gVSS), TB-PN/PS ratio (R1=2.95, R2=4.73), and better settling performance (with respective SVI3and SVI30 values of 41.67, 37.5mL/g for R1, and 30.36, 28.57mL/g for R2). Compared to R1, the granular sludge in R2had higher activity, with specific oxygen uptake rate (SOUR) and specific ammonia oxidation rate (SAOR) values of 754mgO2/(gVSS·h) and 90.74mg/(gVSS·h), respectively. High-throughput sequencing results indicated that the granular sludge supplemented with eggshell microcarriers had a higher abundance of nitrifying bacteria (Nitrosomonas) and EPS-producing bacteria (such as Comamonadaceae__unclassified).
|
Received: 02 March 2024
|
|
|
|
|
[1] 徐航,张冰,时文歆.聚苯乙烯微塑料对菌-藻颗粒污泥的影响机制研究[J]. 中国环境科学, 2023,43(10):5562-5573. Xu H, Zhang B, Shi W X. Mechanism of polystyrene microplastics on bacterial-algal granular sludge [J]. China Environmental Science, 2023,43(10):5562-5573. [2] 郭媛,冯思琪,权晨妍,等.好氧颗粒污泥的解体机制及修复策略研究进展[J]. 中国环境科学, 2024,44(2):708-720. Guo Y, Feng S Q, Quan C Y, et al. Progress of disintegration mechanism and remediation strategy of aerobic granular sludge [J]. China Environmental Science, 2024,44(2):708-720. [3] Tsuneda S. Characterization of nitrifying granules produced in an aerobic upflow fluidized bed reactor [J]. Water Research, 2003,37(20): 4965-4973. [4] Berrelleza-Valdez F, Parades-Aguilar J, Peña-Limón C E, et al. A novel process of the isolation of nitrifying bacteria and their development in two different natural lab-scale packed-bed bioreactors for trichloroethylene bioremediation [J]. Journal of Environmental Management, 2019,241:211-218. [5] Kishida N, Kono A, Yamashita Y, et al. Formation of Aerobic Granular Sludge in a Continuous-Flow Reactor - Control Strategy for the Selection of Well-Settling Granular Sludge-[J]. Journal of Water and Environment Technology, 2010,8(3):251-258. [6] Jin R-C, Zheng P, Mahmood Q, et al. Performance of a nitrifying airlift reactor using granular sludge [J]. Separation and Purification Technology, 2008,63(3):670-675. [7] Ren X, Chen Y, Guo L, et al. The influence of Fe2+, Fe3+ and magnet powder (Fe3O4) on aerobic granulation and their mechanisms [J]. Ecotoxicology and Environmental Safety, 2018,164:1-11. [8] Liu Z, Liu Y J, Zhang A N, et al. Study on the process of aerobic granule sludge rapid formation by using the poly aluminum chloride (PAC) [J]. Chemical Engineering Journal, 2014,250:319-325. [9] Basri H F, Anuar A N, Yuzir A, et al. Diatomite carrier for rapid formation of Aerobic Granular Sludge [J]. IOP Conference Series: Earth and Environmental Science, 2020,479(1):012028. [10] Long B, Yang C Z, Pu W H, et al. Rapid cultivation of aerobic granular sludge in a continuous flow reactor [J]. Journal of Environmental Chemical Engineering, 2015,3(4):2966-2973. [11] 宋志伟,童龙燕,潘月军,等.絮凝细菌投加量对好氧颗粒污泥性能影响的研究[J]. 环境科学, 2010,31(5):1263-1268. Song Z W, Tong L Y, Pan Y J, et al. Effects of flocculating bacteria dosage on the performance of aerobic granular sludge [J]. Environmental Science, 2010,31(5):1263-1268. [12] 刘文如,宋家俊,王建芳,等.硝化微颗粒污泥快速培养及其亚硝化功能快速实现[J]. 环境科学, 2020,41(1):353-359. Liu W R, Song J J, Wang J F, et al. Rapid cultivation of nitrifying microparticulate sludge and rapid realisation of its nitrosation function [J]. Environmental Science, 2020,41(1):353-359. [13] van de Graaf A A, de Bruijn P, Robertson L A, et al. Autotrophic growth of anaerobic ammonium-oxidizing micro-organisms in a fluidized bed reactor [J]. Microbiology, 1996,142(8):2187-2196. [14] 国家环境保护总局.水和废水监测分析方法-第4版[M]. 北京:中国环境科学出版社, 2002. State Environmental Protection Administration,"Analysis and detection methods of water and wastewater"-Version 4[M]. BeiJing: China Environmental Science Press, 2002. [15] Zhu L, Lv M L, Dai X, et al. Role and significance of extracellular polymeric substances on the property of aerobic granule [J]. Bioresource Technology, 2012,107:46-54. [16] Long B, Xuan X P, Yang C Z, et al. Stability of aerobic granular sludge in a pilot scale sequencing batch reactor enhanced by granular particle size control [J]. Chemosphere, 2019,225:460-469. [17] 李冬,毛中新,李明润,等.序批式与连续流交替运行的短程硝化启动研究[J]. 中国环境科学, 2023,43(7):3438-3446. Li D, Mao Z X, Li M R, et al. Initiation of short-range nitrification by alternating sequential batch and continuous flow [J]. China Environmental Science, 2023,43(7):3438-3446. [18] 艾翠玲,蔡丽云.红斑顠体虫在活性污泥中的生长特性研究[J]. 环境污染与防治, 2011,33(8):62-65,68. Ai C L, Cai L Y. Characterisation of the growth of P. erythematosus in activated sludge [J]. Environmental Pollution and Control, 2011,33(8): 62-65,68. [19] 梁鹏,黄霞,钱易,等.环境因子对红斑顠体虫生长的影响[J]. 中国环境科学, 2004,(5):99-102. Liang P, Huang X, Qian Y, et al. Influence of environmental factors on the growth of the red spotted ladybird [J]. China Environmental Science, 2004,(5):99-102. [20] Liu Y, Liu Q-S. Causes and control of filamentous growth in aerobic granular sludge sequencing batch reactors [J]. Biotechnology Advances, 2006,24(1):115-127. [21] Lemaire R, Webb R I, Yuan Z G. Micro-scale observations of the structure of aerobic microbial granules used for the treatment of nutrient-rich industrial wastewater [J]. The ISME Journal, 2008,2(5): 528-541. [22] Zhang B, Lens P N L, Shi W X, et al. Enhancement of aerobic granulation and nutrient removal by an algal-bacterial consortium in a lab-scale photobioreactor [J]. Chemical Engineering Journal, 2018, 334:2373-2382. [23] Niu X Y, Han X S, Jin Y, et al. Aerobic granular sludge treating hypersaline wastewater: Impact of pH on granulation and long-term operation at different organic loading rates [J]. Journal of Environmental Management, 2023,330:117164. [24] Hu Z T, Duan H R, Wang Z Y, et al. Centralized iron-dosing into returned sludge brings multifaceted benefits to wastewater management [J]. Water Research, 2021,203:117536. [25] Shi Y J, Liu Y. Evolution of extracellular polymeric substances (EPS) in aerobic sludge granulation: Composition, adherence and viscoelastic properties [J]. Chemosphere, 2021,262:128033. [26] 张春晖,鲁文静,苏长罗,等.Ni2+对好氧颗粒污泥系统性能的影响[J]. 中国环境科学, 2020,40(11):4721-4727. Zhang C H, Lu W J, Su C L, et al. Effect of Ni2+ on the performance of aerobic granular sludge system [J]. China Environmental Science, 2020,40(11):4721-4727. [27] 吴瑞馨,赵彬,陈宇航,等.高有机负荷对好氧颗粒污泥形成和稳定性能的影响[J]. 环境工程学报, 2023,17(5):1662-1673. Wu R X, Zhao B, Chen Y H, et al. Effects of high organic load on the formation and stabilization of aerobic granular sludge [J]. Journal of Environmental Engineering, 2023,17(5):1662-1673. [28] Peng T, Wang Y, Wang J, et al. Effect of different forms and components of EPS on sludge aggregation during granulation process of aerobic granular sludge [J]. Chemosphere, 2022,303:135116. [29] Zhang L N, Long B, Cheng Y Y, et al. Rapid cultivation and stability of autotrophic nitrifying granular sludge [J]. Water Science and Technology, 2020,81(2):309-320. [30] Long B, Yang C Z, Pu W H, et al. Rapid cultivation of aerobic granular sludge in a pilot scale sequencing batch reactor [J]. Bioresource Technology, 2014,166:57-63. [31] Tay J ‐H., Liu Q ‐S., Liu Y. The role of cellular polysaccharides in the formation and stability of aerobic granules [J]. Letters in Applied Microbiology, 2001,33(3):222-226. [32] 李冬,高飞雁,解一博,等.高频交替OLR强化好氧颗粒污泥性能研究[J]. 中国环境科学, 2022,42(8):3635-3642. Li D, Gao F Y, Xie Y B, et al. Study on the performance of aerobic granular sludge enhanced by high-frequency alternating OLR [J]. China Environmental Science, 2022,42(8):3635-3642. [33] 支丽玲,马鑫欣,刘奇欣,等.好氧颗粒污泥形成过程中群感效应的作用研究[J]. 中国环境科学, 2020,40(5):2148-2156. Zhi L L, Ma X X, Liu Q X, et al. Study on the role of group sensing effect in the formation process of aerobic granular sludge [J]. China Environmental Science, 2020,40(5):2148-2156. [34] 刘崇,李玉光,陈宁,等.自养硝化颗粒污泥培养过程及微观特征[J]. 中国环境科学, 2023,43(9):4688-4696. Liu C, Li Y G, Chen N, et al. Cultivation process and microscopic characteristics of autotrophic nitrifying granular sludge [J]. China Environmental Science, 2023,43(9):4688-4696. [35] 杨庆,杨玉兵,杨忠启,等.溶解氧对短程硝化稳定性及功能菌群的影响[J]. 中国环境科学, 2018,38(9):3328-3334. Yang Q, Yang Y B, Yang Z Q, et al. Effects of dissolved oxygen on the stability of short-range nitrification and functional flora [J]. China Environmental Science, 2018,38(9):3328-3334. [36] Zhong Z X, Wu X H, Gao L, et al. Efficient and microbial communities for pollutant removal in a distributed-inflow biological reactor (DBR) for treating piggery wastewater [J]. RSC Advances, 2016,6(98):95987-95998. [37] Rehman Z U, Ali M, Iftikhar H, et al. Genome-resolved metagenomic analysis reveals roles of microbial community members in full-scale seawater reverse osmosis plant [J]. Water Research, 2019,149:263- 271. [38] Liang D B, Guo W, Li D Y, et al. Enhanced aerobic granulation for treating low-strength wastewater in an anaerobic-aerobic-anoxic sequencing batch reactor by selecting slow-growing organisms and adding carriers [J]. Environmental Research, 2022,205:112547. [39] Guo Y Y, Peng Y Z, Wang B, et al. Achieving simultaneous nitrogen removal of low C/N wastewater and external sludge reutilization in a sequencing batch reactor [J]. Chemical Engineering Journal, 2016,306: 925-932. [40] He Q L, Chen L, Zhang S J, et al. Hydrodynamic shear force shaped the microbial community and function in the aerobic granular sequencing batch reactors for low carbon to nitrogen (C/N) municipal wastewater treatment [J]. Bioresource Technology, 2019,271:48-58. [41] 栾志翔,李志伟,王江宽,等.北方某污水处理厂抗氯离子冲击效果分析[J]. 给水排水, 2020,56(1):32-38. Luan Z X, Li Z W, Wang J K, et al. Analysis of the effect of chlorine impact resistance in a wastewater treatment plant in the north of China [J]. Water Supply and Drainage, 2020,56(1):32-38. [42] Zhang Z M, Qiu J X, Xiang R H, et al. Organic loading rate (OLR) regulation for enhancement of aerobic sludge granulation: Role of key microorganism and their function [J]. Science of The Total Environment, 2019,653:630-637. |
|
|
|