|
|
Effect of sewage sludge-derived biostimulants on the quality of tomato and soil properties |
TAN Jia-yi1, HAO Jia-hou1, LI Yu-zhi1, LI Zuo-yue1, JIANG Zhi-jian2, SONG Lian3, WANG Shuo1,4, LI Ji1,4 |
1. Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering in Jiangnan University, Wuxi 214122, China; 2. Guolian Environment & Energy Group, Wuxi 214131, China; 3. Wuxi Guolian Environmental Science Technology Co. Ltd., Wuxi 214171, China; 4. Jiangsu College of Water Treatment Technology and Material Collaborative Innovation Center, Suzhou 215009, China |
|
|
Abstract In order to explore the effect of sewage sludge-derived biostimulants on the quality of the crop and soil, four fertilization groups were designed: non-fertilization (CK), chemical fertilizer (HF), spraying sewage sludge-derived biostimulants on foliage (F_CJS) and spraying sewage sludge-derived biostimulants on the surface of soil (S_CJS). The effects of sewage sludge-derived biostimulants on the flavor and nutritional quality of ‘Micro-Tom’ tomato, physicochemical properties and microbial community structure of the soil were analyzed. The experimental results showed that compared with HF group, F_CJS increased the soluble sugar and protein contents of the ‘Micro-Tom’ tomato, and S_CJS increased vitamin C content and reduced the amount of titratable acid and nitrate, thus the ratio of sugar and acid was raised to improve the flavor and nutritional quality of tomato. In addition, the content of soil organic matter (SOM) in S_CJS was significantly higher than that in HF, while nitrate content was much lower. Compared with CK, S_CJS increased the abundance of microorganisms involved in the nitrogen cycle, and the abundance of microorganisms involved in the carbon cycle was about twice as high as that of HF, indicated that the application of sewage sludge-derived biostimulants improved the activity of the soil microbial community. Moreover, comparing CK and HF group, the relative abundance of beneficial bacteria Arthrobacter、Sphingomonas、Stretomyces、Skermanella and Massilia significantly increased in F_CJS and S_CJS, conversely, the pathogenic bacteria MND 1correspondingly decreased. S_CJS can also reduce the relative abundance of denitrifying bacteria Terrimonas and Bradyrhizobium. The sewage sludge-derived biostimulants significantly affects the soil microbial community structure of ‘Micro-Tom’ tomato, playing a positive role in the regulation of soil quality, and further possesses the potential to reduce soil N2O emission.
|
Received: 19 January 2023
|
|
|
|
|
[1] 黄国勤,王兴祥,钱海燕,等.施用化肥对农业生态环境的负面影响及对策[J].生态环境, 2004,13(4):656-660. Huang G B, Wang X Y, Qian H Y, et al.Negative effects of chemical fertilizer application on agricultural ecological environment and its countermeasures [J].Ecology and Environment, 2004,13(4):656-660. [2] 张健,董星晨,张鹤,等.长期施氮对马铃薯田土壤剖面硝态氮积累及细菌群落结构的影响[J].甘肃农业大学学报, 2019,54(1): 30-41. Zhang J, Dong X C, Zhang H, et al. Effect of long-term nitrogen application on nitrate accumulation and bacterial community structure in soil profiles of potato fields [J].Journal of Gansu Agricultural University, 2019,54(1):30-41. [3] Coban O, De Deyn G B, van der Ploeg M. Soil microbiota as game-changers in restoration of degraded lands [J].Science, 2022,375(65-84). [4] He H, Peng M W, Lu W D, et al. Commercial organic fertilizer substitution increases wheat yield by improving soil quality [J].Science of The Total Environment, 2022Dec;851(Pt 1):158132. [5] 吕永兴.浅谈市政污泥处理技术[J].防护工程, 2019,9:10-11. Lv Y X. Discussion on municipal sludge treatment technology [J].Protection Engineering, 2019,9:10-11. [6] 李盈.污泥农用现状及其前景[J].现代农业, 2010,(10):84-86. Li Y. The status and prospect of sludge agriculture [J].Modern Agriculture, 2010,(10):84-86. [7] 吴文强,赵永志,李旭军,等.发酵污泥对蔬菜和土壤重金属积累的影响[J].分析与研究, 2011,(4):9-11. Wu W Q, Zhao Y Z, Li X J, et al. Effects of fermented sludge on accumulation of heavy metals in vegetables and sosoil [J].Analysis and Research, 2011,(4):9-11. [8] Al-Najar H, Schulz R, Breuer J, et al. Effect of cropping systems on the mobility and uptake of Cd and Zn [J].Environ Chem Letters, 2005,3(1):13-17. [9] Gardiner D T, Miller R W, Badamchian B, et al. Effects of repeated sewage sludge applications on plant accumulation of heavy metals [J].Agriculture, Ecosystems & Environment, 1995,55(1):1-6. [10] Tang Y F, Xie H, Sun J, et a1. Alkaline thermal hydrolysis of sewage sludge to produce high-quality liquid fertilizer rich in nitrogen-containing plant-growth-promoting nutrients and biostimulants [J].Water Research, Volume 211, 2022,118036. [11] 朱强.鲜食番茄口感和特征风味客观评价方法的研究[D].青岛:青岛农业大学, 2018. Zhu Q. An objective evaluation method of taste and characteristic flavor in fresh tomato [D].Qingdao: Qingdao Agricultural University, 2018. [12] GB 19338-2003蔬菜中硝酸盐限量[S].GB 19338-2003 Nitrate limits in vegetables [S]. [13] 赵景景.不同土壤有机质水平对苹果叶片光合、果实糖酸代谢及品质的影响[D].杨凌:西北农林科技大学, 2018. Zhao J J. Effect of different soil organic matter levels on glycoacid metabolism and quality of photosynthetic fruits in apple leaves [D].Yangling: Northwest A & F University, 2018. [14] 陈云堂,郭东权,杨忠强,等.60Coγ射线辐照对水果蔬菜中维生素C的影响[J].核农学报, 2009,23(2):302-307. Chen Y T, Guo D Q, Yang Z Q, et al. Effect of 60Co γ -irradiation on vitamin C in fruits and vegetables [J].Journal of Nuclear Agriculture, 2009,23(2):302-307. [15] 曹玉军,刘春光,王晓慧,等.施钾量对甜玉米穗位叶蔗糖合成的影响[J].玉米科学, 2010,18(5):72-75. Cao Y J, Liu C G, Wang X H, et al. Effect of potassium application on sucrose synthesis in the ear of sweet corn [J].Maize Science, 2010, 18(5):72-75. [16] 赵朋,李絮花,王克安,等.氮钙互作对日光温室中黄瓜硝酸盐代谢的影响[J].山东农业科学, 2008,(3):68-70. Zhao P, Li H, Wang K A, et al. Effect of nitrogen-calcium interaction on nitrate metabolism of cucumber in a solar greenhouse [J].Agricultural Science of Shandong Province, 2008,(3):68-70. [17] 胡育化.连续两年施用钙、镁、硼肥对常山胡柚叶片黄化和果实品质的影响[D].湖北:华中农业大学, 2013. Hu Y H. Effect of calcium-magnesium-boron fertilizer on leaf yellowing and fruit quality for two consecutive years [D].Hubei: Huazhong Agricultural University, 2013. [18] 谢巧娟.三种有机肥对土壤理化性质与草莓生长结果的影响[D].重庆:西南大学, 2017. Xie Q J. Effect of three organic fertilizers on soil physicochemical properties and strawberry growth results [D].Chongqing: Southwest University, 2017. [19] 王华静,吴良欢,陶勤南.高等植物氨基酸生物效应的研究进展[J].土壤通报, 2003,34(5):469-472. Wang H J, Wu L H, Tao Q N. Progress on the biological effects of amino acids in higher plants [J].Soil Bulletin, 2003,34(5):469-472. [20] 訾俊峰,寇金花.亚硝胺在人体内的合成及其危害[J].许昌师专学报,1997,(2):23-26. Zi J F, Kou J H. Synthesis of nitrosamines in the human body and their harm [J].Xuchang Teachers' College, 1997,(2):23-26. [21] Oldroyd GED, Leyser O. A plant’s diet, surviving in a variable nutrient environment [J].Science, 2020,368(6486):eaba0196. [22] Hogue E J, Cline J A, Neilsen G, et a1. Growth and yield responses to mulches and cover crops under low potassium conditions in drip-irrigated apple orchards on coarse soils [J].Hortscience, 2010,45(12): 1866–1871. [23] Choi HS, Rom CR, Gu MM. Effect of different organic apple production systems on seasonal nutrient variations of soil and leaf [J].Scientia Horticulturae, 2011,129(1):9-17. [24] Song X H, Xie K, Zhao H B, et a1. Effects of different organic fertilizers on tree growth, yield, fruit quality, and soil microorganisms in a pear orchard [J].European Journal of Horticultural Science, 2012,77(5):204-210. [25] Sas-Paszt L, Pruski K, Żurawicz E, et a1. The effect of organic mulches and mycorrhizal substrate on growth, yield and quality of Gold Milenium apples on M.9rootstock [J].Canadian Journal of Plant Science, 2014,94(2): [26] Marathe R A, Sharma J, Murkute A A, et a1. Response of nutrient supplementation through organics on growth, yield and quality of pomegranate [J].Scientia Horticulturae, 2017,214. [27] 张维理,张认连.土壤有机碳作用及转化机制研究进展[J].中国农业科学, 2020,53(2):317-331. Zhang W L, Zhang R L. Progress in the action and transformation mechanism of soil organic carbon [J].Agricultural Science of China, 2020,53(2):317-331. [28] Spargo JT, Cavigelli MA, Mirsky SB, et al. Mineralizable soil nitrogen and labile soil organic matter in diverse long-term cropping systems [J].Nutrient Cycling in Agroecosystems, 2011,90:253-266. [29] 郑丹,李鹤鸣,韩力.土壤放线菌资源及其应用[J].绿色科技, 2021,23(2):183-187,193. Zheng D, Li H M, Han L. Soil Actinomyces Resources and their applications [J].Green Technology, 2021,23(2):183-187,193. [30] 曹照明,缪鸽.变形杆菌鉴别试验——尿索酶快速试纸测定法[J].临床检验杂志, 1985,(4):191. Cao ZM, Miao G. Proteus identification test —uroordase rapid paper assay [J].Journal of Clinical Laboratory, 1985,(4):191. [31] 张新建,张广志,杨合同.节杆菌环境适应性的基因组学研究进展[J].微生物学报, 2016,56(4):570-577. Zhang X J, Zhang G Z, Yang H T. Progress in genomics of environmental adaptability in Arthrobacter [J].Journal of Microbiology, 2016,56(4):570-577. [32] Jiang Z W, Yang S H, Pang Q Q, et al. Biochar improved soil health and mitigated greenhouse gas emission from controlled irrigation paddy field: Insights into microbial diversity [J].Journal of Cleaner Production, Volume 318,2021,128595. [33] 杜思瑶,于淼,刘芳华,等.设施种植模式对土壤细菌多样性及群落结构的影响[J].中国生态农业学报, 2017,25(11):1615-1625. Du S Y, Yu M, Liu F H, et al. Effect of facility planting patterns on soil bacterial diversity and community structure [J].Chinese Journal of Ecological Agriculture, 2017,25(11):1615-1625. [34] 杨文玲,杜志敏,孙召华,等.芽孢杆菌在重金属污染土壤修复中的研究进展[J].环境污染与防治, 2021,43(6):759-763. Yang W L, Du Z M, Sun Z H, et al. Progress of Bacillus in the remediation of heavy metal contaminated soil [J].Environmental Pollution and Prevention, 2021,43(6):759-763. [35] Megharaj M, Avudainayagam S. Toxicity of hexavalent chromium and its reduction by bacteria isolated from soil contaminated with tannery waste [J].Curr Microbiol, 2003,47(1):51-4. [36] 武华周,娄德钊,涂娜娜,等.抗、感青枯病桑树根际细菌群落结构与多样性[J].福建农业学报, 2020,35(9):1004−1011. Wu H Z, Lou D Z, Tu N N, et al. Community structure and diversity of rhizosphere of mulberry [J].Fujian Journal of Agriculture, 2020,35(9): 10041011. [37] 王燕,李激,支尧,等.新型生物质碳源强化脱氮效果及微生物菌群分析[J].环境工程, 2022,40(9):63-68,117. Wang Y, Li J, Zhi Y, et al. Analysis of enhanced nitrogen removal effect of new biomass carbon sources [J].Environmental Engineering, 2022,40(9):63-68,117. [38] 章妮.植物优势种对青海湖湿地反硝化微生物群落特征的影响机理[D].西宁:青海师范大学, 2022. Zhang N. Mechanism of dominant plant species on the characteristics of denitrification microbial community in Qinghai Lake wetland [D].Xi¢ning: Qinghai Normal University, 2022. [39] Chen HB, Du MY, Wang DB, et al. Influence of chlortetracyeline as an antibiotic residue on n itrous oxide emissions from wastewater treatment [J].Bioresource Technology, 2020,313:123696. [40] 王蓥燕,卢圣鄂,陈小敏,等.若尔盖高原湿地泥炭沼泽土亚硝酸盐还原酶(nirK)反硝化细菌群落结构分析[J].生态学报, 2017,37(19): 6607-6615. Wang Y Y, Lu S E, Chen X M, et al. Analysis of the community structure of nitrorifying bacteria in the peat marsh [J].Journal of Ecology, 2017,37(19):6607-6615. [41] Hans J B, et al. Sphingomonas aurantiaca sp.nov. Sphingomonas aerolata sp.nov. and Sphingomonas faeni sp.nov., air-and dustborne and Antarctic, orange-pigmented, psychrotolerant bacteria, and emended description of the genus Shingomonas [J].International Journal of Systematic and Evolutionary Microbiology, 2003,53:1253-1260. [42] Subhash Y, Yoon, Da-Eun, et al. Skermanella mucosa sp nov., isolated from crude oil contaminated soil [J].Antonie van Leeuwenhoek: Journal of Microbiology and serology, 2017,110(8):1053-1060. [43] 北京百欧博伟生物技术有限公司.链霉菌属的特征和培养及主要作用[EB/OL].https://www.instrument.com.cn/suppliers/SH104717/ news597169.html, 2021-11-10. [44] Lee H J, lee S H, Lee S S, et al. Ramlibacter solisilvae sp. nov., isolated from forest soil, and emended description of the genus Ramlibacter [J].International Journal of Systematic and Evolutionary Microbiology, 2014,64:1317-1322. [45] 周利,宋以萍,周杰民,等.稻田硝酸盐异化还原成铵细菌群落结构的垂向分布特性[J].环境科学学报, 2020,40(3):1029-1039. Zhou L, Song Y P, Zhou J M, et al. Vertical trait distribution of the bacterial community structure of dissimilated nitrate reduction to ammonium in paddy fields [J].Journal of Environmental Science, 2020,40(3):1029-1039. |
|
|
|