|
|
Applicability of four types of meteorological data to Fukushima nuclear accident 137Cs simulations |
LI Huan-ting1, YANG Li1, SONG Jia-yue1, LI Xin-peng1, FANG Sheng2 |
1. School of Nuclear Science and Engineering, North China Electric Power University, Beijing 102206, China; 2. Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China |
|
|
Abstract The local-scale atmospheric transport of 137Cs following the Fukushima accident was investigated using ensemble modelling based on four different meteorological inputs (FNL reanalysis data, ERA-Interim reanalysis data, GFS analysis and forecast data, and MEA field meteorological observations data). Two different types of atmospheric transport model were used, i.e., regional-scale meteorological model WRF and Lagrangian particle dispersion model FLEXPART. The influence of different meteorological data was evaluated based on the monitoring data from two monitoring stations in Futaba and Naraha. The simulations showed that FLEXPART successfully reproduced most of the peaks at both stations using all four types of meteorological data (average FAC10 of Futaba:0.57; average FAC10 of Naraha:0.58). The simulations using ERA-Interim and MEA reproduce more peak observations and achieve more satisfactory statistical metrics than the others. The simulated spatial 137Cs distribution using four meteorological data were slightly different. The results of ERA-Interim and MEA showed a wider range of plumes, better reproducing the observations. Therefore, ERA-Interim and MEA are recommended for simulating the atmospheric 137Cs transport following the Fukushima nuclear accident at local scale.
|
Received: 23 April 2024
|
|
|
|
|
[1] 葛宝珠,陆芊芊,陈学舜,等.放射性核素大气扩散数值模拟研究综述 [J]. 环境科学学报, 2021,41(5):1599-1609. Ge B Z, Lu Q Q, Chen X S, et al. A review of the numerical simulations of the atmospheric dispersion of radionuclides [J]. Acta Scientiae Circumstantiae, 2021,41(5):1599-1609. [2] Connan O, Smith K, Organo C, et al. Comparison of RIMPUFF, HYSPLIT, ADMS atmospheric dispersion model outputs, using emergency response procedures, with 85Kr measurements made in the vicinity of nuclear reprocessing plant [J]. Journal of Environmental Radioactivity, 2013,124:266-277. [3] Cao B, Cui W, Chen C, et al. Development and uncertainty analysis of radionuclide atmospheric dispersion modeling codes based on Gaussian plume model [J]. Energy, 2020,194:116925. [4] Fang S, Zhuang S, Goto D, et al. Coupled modeling of in-and below-cloud wet deposition for atmospheric 137Cs transport following the Fukushima Daiichi accident using WRF-Chem: A self-consistent evaluation of 25scheme combinations [J]. Environment International, 2022,158:106882. [5] 郭瑞萍,杨春林,王 博,等.拉格朗日法模拟华东核电厂137Cs大气扩散特征影响因子 [J]. 核电子学与探测技术, 2017,37(5):545-552. Guo R P, Yang C L, Wang B, et al. Impact factors analysis of 137Cs atmosphere dispersion from Huadong nuclear power plant basing on lagrange method [J]. Nuclear Electronics & Detection Technology, 2017,37(5):545-552. [6] Park S U, Choe A, Park M S. Atmospheric dispersion and deposition of radionuclides (137Cs and 131I) released from the Fukushima Dai-ichi nuclear power plant [J]. Computational Water, Energy, and Environmental Engineering, 2013,2(2):61-68. [7] Haq A Ul, Nadeem Q, Farooq A, et al. Assessment of Lagrangian particle dispersion model “LAPMOD” through short range field tracer test in complex terrain [J]. Journal of Environmental Radioactivity, 2019,205-206:34-41. [8] Wang S, Li X, Fang S, et al. Validation and sensitivity study of Micro-SWIFT SPRAY against wind tunnel experiments for air dispersion modeling with both heterogeneous topography and complex building layouts [J]. Journal of Environmental Radioactivity, 2020,222: 106341. [9] Bilgic E, Gündüz O. Dose and risk estimation of Cs-137and I-131released from a hypothetical accident in Akkuyu Nuclear Power Plant [J]. Journal of Environmental Radioactivity, 2020,211:106082. [10] Dong X, Zhuang S, Fang S, et al. Multi-scenario validation of CALMET-RIMPUFF for local-scale atmospheric dispersion modeling around a nuclear powerplant site with complex topography [J]. Journal of Environmental Radioactivity, 2021,229-230:106547. [11] Dong X, Zhuang S, Fang S, et al. Site-targeted evaluation of SWIFT-RIMPUFF for local-scale air dispersion modeling around Sanmen nuclear power plant based on multi-scenario wind tunnel experiments [J]. Annals of Nuclear Energy, 2021,164:108593. [12] Dong X, Zhuang S, Fang S, et al. Validation and sensitivity study of Micro-SWIFT SPRAY against wind tunnel experiments for small-scale air dispersion modeling between mountains and dense building at a nuclear power plant site [J]. Progress in Nuclear Energy, 2021, 142:104007. [13] 陆正奇,韩永翔,夏俊荣,等.WRF模式对污染天气下边界层高度的模拟研究 [J]. 中国环境科学, 2018,38(3):822-829. Lu Z Q, Han Y X, Xia J R, et al. Modeling study on boundary layer height in pollution weather by WRF with different boundary layer schemes [J]. China Environmental Science, 2018,38(3):822-829. [14] 郭 欢,李鸣野,张月婷,等.边界层参数化方案对FLEXPART-WRF耦合影响的数值模拟研究——以某核电站为例 [J]. 四川环境, 2023,42(1):132-141. Guo H, Li M Y, Zhang Y T, et al. Numerical simulation of the influence of boundary layer parameterization schemes on FLEXPART-WRF hybrid model—taking a nuclear power plant as an example [J]. Sichuan Environment, 2023,42(1):132-141. [15] 唐智洪.严重事故下放射性核素的大气环境扩散迁移与公众应急响应研究 [D]. 广州:华南理工大学, 2022. Tang Z H. Atmospheric dispersion transport of radionuclides and public emergency response study under severe accidents [D]. Guangzhou: South China University of Technology, 2022. [16] 谢 波,胡 胜,龙兴贵,等.福岛核事故释放放射性气溶胶的化学分析进展 [J]. 核化学与放射化学, 2017,39(2):9.DOI:CNKI:SUN: HXFS.0.2017-02-001. Xie B, Hu S, Long X G. Development of chemical analysis for radioactive aerosols from Fukushima Daiichi nuclear accident [J]. Journal of Nuclear and Radioanalytical, 2017,39(2):9.DOI:CNKI: SUN:HXFS.0.2017-02-001. [17] 崔慧玲.CALPUFF模式用于放射性核素不同尺度的迁移扩散研究 [J]. 太原理工大学, 2012.DOI:10.7666/d.Y2238102. Cui H L. The Study of Radionuclides Atmospheric Transport Based on CALPUFF [J]. Taiyuan University of Technology, 2012.DOI:10.7666/d.Y2238102. [18] Arnold D, Maurer C, Wotawa G, et al. Influence of the meteorological input on the atmospheric transport modelling with FLEXPART of radionuclides from the Fukushima Daiichi nuclear accident [J]. Journal of Environmental Radioactivity, 2015,139212-225. [19] Skamarock, William C, Joseph B. Klemp, Jimy Dudhia, et al. A description of the advanced research WRF model version 4 [R]. National Center for Atmospheric Research, 2019. [20] 赵志朋.中尺度风资源数值模拟试验分析 [J]. 能源与节能, 2014, (10):80-82,89. Zhao Z M. Numerical simulation test analysis on mesoscale wind resource [J]. Energy and Energy Conservation, 2014,(10):80-82,89. [21] Wei P, Liu J, Ye S, et al. Real-time GNSS tropospheric parameter prediction of extreme rainfall events in China based on WRF multi-source data assimilation [J]. Advances in Space Research, 2024,73(3): 1611-1629. [22] 费建芳,王鹏飞,程小平,等.日本大地震福岛核污染物扩散传输区域模拟研究 [J]. 中国科学:地球科学, 2014(2):12.DOI:CNKI:SUN: JDXK.0.2014-02-008. Fei J F, Wang P F, Cheng X P, et al. A regional simulation study on dispersion of nuclear pollution from the damaged Fukushima Nuclear Power Plant [J]. Science China: Earth Sciences, 2014(2):12.DOI: CNKI:SUN:JDXK.0.2014-02-008. [23] 王 佳.WRF模式在调节大气降水的数值试验研究 [D]. 南京:南京信息工程大学, 2008. Wang J. Numerical experiment research of regulating the atmospheric precipitation by WRF model [D]. Nanjing: Nanjing University of Information Science & Technology, 2008. [24] 周广强,谢 英,吴剑斌,等.基于WRF-Chem模式的华东区域PM2.5预报及偏差原因 [J]. 中国环境科学, 2016,36(8):2251-2259. Zhou G Q, Xie Y, Wu J B, et al. WRF-Chem based PM2.5 forecast and bias analysis over the East China Region [J]. China Environmental Science, 2016,36(8):2251-2259. [25] 田 飞,伯 鑫,薛晓达,等.基于复杂地形-气象场的二噁英污染物沉降研究 [J]. 中国环境科学, 2019,39(4):1678-1686. Tian F, Bo X, Xue X D, et al. Study on settlement of dioxin pollutants under complex terrain-weather conditions [J]. China Environmental Science, 2019,39(4):1678-1686. [26] 刘 扬,王 颖,刘 灏,等.基于WRF-Chem模拟验证的天水市主城区大气污染源排放清单 [J]. 中国环境科学, 2022,42(1):32-42. Liu Y, Wang Y, Liu H, et al. Air pollutants emission inventory for the main urban area of Tianshui City based on verification by WRF-Chem simulation [J]. China Environmental Science, 2022,42(1):32-42. [27] 杨 力,王存友,陈义学,等.四种拉格朗日粒子浓度计算方法的评估——箱式计数法、高斯核、均匀核和抛物线核 [J]. 中国环境科学, 2023,43(7):3404-3415. Yang L, Wang C Y, Chen Y X, et al. Evaluation of four Lagrangian particle concentration calculation methods-Box counting, Gaussian kernel, Uniform kernel and Parabolic kernel [J]. China Environmental Science, 2023,43(7):3404-3415. [28] 蔡旭晖.湍流微气象观测的印痕分析方法及其应用拓展 [J]. 大气科学, 2008,32(1):123-132. Cai Xuhui. Footprint analysis in micrometeorology and its extended applications[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 2008,32(1):123-132. [29] Stohl A, Sodemann H, Eckhardt S, et al. 2011. The Lagrangian particle dispersion model FLEXPART version 8.2 [Z]. FLEXPART User Guide. https://www.flexpart.eu/downloads/26. [30] 吴保见,王 昆,贾 立,等.源项对FLEXPART模式模拟福岛核事故放射性物质长距离传输的影响 [J].气候与环境研究, 2017,22(1): 13.DOI:10.3878/j.issn.1006-9585.2016.15246. Wu Baojian, Wang Kun, Jia Li, et al. Influences of source term on long-range transport of radionuclides from the Fukushima Daiichi nuclear accident with FLEXPART model [J]. Climatic and Environmental Research, 2017,22(1):10−22,doi:10.3878/j.issn.1006-9585.2016.15246. [31] National Centers for Environmental Prediction, National Weather Service, NOAA, U.S. Department of Commerce. NCEP FNL operational model global tropospheric analyses, continuing from July 1999 [Z]. Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory. 2000,https://doi.org/10.5065/D6M043C6 [WWW Document]. [32] European Centre for Medium-Range Weather Forecasts. ERA-interim Project. Research data archive at the national center for atmospheric research, computational and information systems laboratory [Z]. 2009,https://doi.org/10.5065/D6CR5RD9[WWW Document]. [33] National Centers for Environmental Prediction, National Weather Service, NOAA, U.S. Department of Commerce, 2007. NCEP Global Forecast System (GFS) Analyses and Forecasts. Research data archive at the national center for atmospheric research, computational and information systems laboratory [Z]. https://doi.org/10.5065/D65Q4TSG [WWW Document]. [34] Geospatial Data Cloud site, Computer Network Information Center, Chinese Academy of Sciences. Terrain data [EB/OL]. http://www.gscloud.cn/sources/details/421?pid=302. European Space Agency (ESA). Global land cover maps [EB/OL]. http://due.esrin.esa.int/page_globcover.php. [35] Tokyo Electric Power Company, 2021. On-site meteorological data from FDNPP1 [Z]. Available online: https://www.tepco.co.jp/decommission/data/monitoring/monitoring_post/index-j.html (last access: 2021), 2012. [36] Chang J C, Hanna S R. Technical descriptions and user’s guide for the BOOT statistical model evaluation software package, version 2.0 [M]. Boston: Landmark Center, 2005. [37] Haq A Ul, Nadeem Q, Farooq A, et al. Assessment of Lagrangian particle dispersion model “LAPMOD” through short range field tracer test in complex terrain [J]. Journal of Environmental Radioactivity, 2019,205-206:34-41. [38] Chang J C, Hanna S R. Air quality model performance evaluation [J]. Meteorology and Atmospheric Physics, 2004,87(1-3):167-196. [39] Chang J C, Franzese P, Chayantrakom K et al. Evaluations of CALPUFF, HPAC, and VLSTRACK with two mesoscale field datasets [J]. Journal of Applied Meteorology, 2003,42(4):453-466. [40] Hanna S R, Hansen O R, Dharmavaram S. FLACS CFD air quality model performance evaluation with Kit Fox, MUST, Prairie Grass, and EMU observations [J]. Atmospheric Environment, 2004,38(28):4675-4687. [41] Trini Castelli S, Armand P, Tinarelli G, et al. Validation of a Lagrangian particle dispersion model with wind tunnel and field experiments in urban environment [J]. Atmospheric Environment, 2018,193:273-289. [42] 宁莎莎,李璟涛,张怀宇.核事故应急大气扩散模型ARTM验证与评价 [J]. 南方能源建设, 2020,7(4):87-92. Ning S S, Li J T, Zhang H Y. Evaluation of nuclear accident atmospheric radionuclide transport model ARTM [J]. Southern Energy Construction, 2020,7(4):87-92. [43] Hanna S, Chang J. Acceptance criteria for urban dispersion model evaluation [J]. Meteorology and Atmospheric Physics, 2012,116(3/4): 133-146. [44] Stohl A, Seibert P, Wotawa G, et al. Xenon-133 and Caesium-137releases into the atmosphere from the Fukushima Dai-ichi nuclear power plant: Determination of the source term, atmospheric dispersion, and deposition [J]. Atmospheric Chemistry and Physics, 2012,12(5): 2313-2343,doi:10.5194/acp-12-2313-2012. [45] Marzo G A. Atmospheric transport and deposition of radionuclides released after the Fukushima Dai-chi accident and resulting effective dose [J]. Atmos. Environ., 2014,94:709-722,doi:10.1016/j.atmosenv. 2014.06.009. [46] Katata G, Chino M, Kobayashi T, et al. Detailed source term estimation of the atmospheric release for the Fukushima Daiichi Nuclear Power Station accident by coupling simulations of an atmospheric dispersion model with an improved deposition scheme and oceanic dispersion model [J]. Atmospheric Chemistry and Physics, 2015,15(2):1029-1070. [47] Tsuruta H, Oura Y, Ebihara M, et al. Time-series analysis of atmospheric radiocesium at two SPM monitoring sites near the Fukushima Daiichi Nuclear Power Plant just after the Fukushima accident on March 11, 2011 [J]. Geochemical Journal, 2018,52(2): 103-121. [48] Wang S, Li X, Fang S, et al. Validation and sensitivity study of Micro-SWIFT SPRAY against wind tunnel experiments for air dispersion modeling with both heterogeneous topography and complex building layouts [J]. Journal of Environmental Radioactivity, 2020, 222:106341. [49] Yang L, Fang S, Zhuang S, et al. Atmospheric 137Cs dispersion following the Fukushima Daiichi nuclear accident: Local-scale simulations using CALMET and LAPMOD [J]. Annals of Nuclear Energy, 2024,195:110137. |
|
|
|