|
|
Variation in benthic community composition, beta diversity, and driving factors in Lake Ulansuhai |
DU Cai-li, CUI Jiang-long, LI Guo-wen, ZHAO Chen, ZHANG Lie-yu |
State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China |
|
|
Abstract The study investigated the benthic community structure, β-diversity and its composition in Lake Ulansuhai, and the effects of environmental/spatial factors on benthic β-diversity were analyzed by the Mantel test. The results showed that the benthic community structure in Lake Ulansuhai had significant seasonal differences, and the variance analysis also showed that there were differences in the biomass and diversity index for zoobenthos. The β-diversity of the benthic community in the Lake Ulansuhai was maintained at a high level and dominated by the turnover component, with the ratio of the turnover component reaching 80%. Mantel's test showed that the geographic distance did not have a significant effect on the β-diversity in the benthic community (P > 0.05). In contrast, environmental factors (mainly total nitrogen) in the water were positively correlated with benthic β-diversity and its turnover component, which indicated that environmental factors were the main drivers affecting the structure of benthic communities in Lake Ulansuhai.
|
Received: 15 April 2024
|
|
|
|
|
[1] Yuan H, Zhang R, Li Q, et al. Unveiling the ecological significance of phosphorus fractions in shaping bacterial and archaeal beta diversity in mesotrophic lakes [J]. Front Microbiol, 2023,14:1279751. [2] Naeem S, Duffy J E, Zavaleta E. The functions of biological diversity in an age of extinction [J]. Science, 2012,336(6087): 1401-1406. [3] Zhou J, Ning D. Stochastic community assembly: Does it matter in microbial ecology? [J]. Microbiology and Molecular Biology Reviews, 2017,81(4):e00002-17. [4] Whittaker R H. Vegetation of the Siskiyou Mountains, Oregon and California [J]. Ecological Monographs, 1960,30(3):279-338. [5] Baselga A. Partitioning the turnover and nestedness components of beta diversity [J]. Global Ecology and Biogeography, 2010,19(1):134-143. [6] Heino J, Tolonen K T. Ecological drivers of multiple facets of beta diversity in a lentic macroinvertebrate metacommunity [J]. Limnology and Oceanography, 2017,62(6):2431-2444. [7] 张多鹏,刘 洋,李正飞,等.长江上游支流赤水河流域底栖动物物种多样性与保护对策 [J]. 生物多样性, 2023,31(8):60-72. Zhang D P, Liu Y, Li Z F, et al. Species diversity and recommended rehabilitative strategies of benthic macroinvertebrate in the Chishui River, a tributary of the upper Yangtze River [J]. Biodiversity Science, 2023,31(8):60-72. [8] 张 姚,温舒珂,张庆吉,等.长江中下游干流滨岸带大型底栖动物群落结构及水质生物学评价 [J]. 长江流域资源与环境, 2023,32(7): 1417-1432. Zhang Y, Wen S K, Zhang Q J, et al. Macrozoobenthos community structure and biological evaluation of water quality in littoral zone of middle and lower Reaches of Yangtze River [J]. Resources and Environment in the Yangtze Basin, 2023,32(7):1417-1432. [9] 梁舒汀,王 菲,吴 丹,等.基于大型底栖动物完整性指数的海河流域典型水库水生态健康评价 [J]. 生态环境学报, 2023,32(8):1457-1464. Liang S T, Wang F, Wu D, et al. Ecological health assessment of reservoirs based on macrobenthic index of biotic integrity in Haihe Basin [J]. Ecology and Environmental Sciences, 2023,32(8):1457-1464. [10] 程佩瑄,孟凡生,王业耀,等.基于底栖动物的松花江流域不同地形分区水质指标阈值研究 [J]. 环境科学研究, 2020,33(9):2061-2073. Cheng P X, Meng F S, Wang Y Y, et al. Thresholds of water quality indicators for macroinvertebrate in different topographic zones of Songhua River Basin [J]. Research of Environmental Sciences, 2020, 33(9):2061-2073. [11] 张 又,程 龙,尹洪斌,等.巢湖流域不同水系大型底栖动物群落结构及影响因素 [J]. 湖泊科学, 2017,29(1):200-215. Zhang Y, Cheng L, Yin H B, et al. Benthic macroinvertebrate community structure and environmental determinants in river systems of Chaohu Basin [J]. Journal of Lake Sciences, 2017,29(1):200-215. [12] Diniz L P, Braghin L D S M, Pinheiro T S A, et al. Environmental filter drives the taxonomic and functional β-diversity of zooplankton in tropical shallow lakes [J]. Hydrobiologia, 2021,848(8):1881-1895. [13] Peláez O, Pavanelli C S. Environmental heterogeneity and dispersal limitation explain different aspects of β-diversity in Neotropical fish assemblages [J]. Freshwater Biology, 2019,64(3):497-505. [14] 上官明珠,胡成业,王 晶,等.我国北缘红树林大型底栖动物群落beta多样性格局及其驱动因素 [J]. 水产学报, 2023:1-13. Shangguan M Z, Hu C Y, Wang J, et al. Beta diversity patterns and its driving factors of the northern margin mangrove macrobenthoscom munity in China [J]. Journal of Fisheries of China, 2023:1-13. [15] Bini L M, Landeiro V L, Padial A A, et al. Nutrient enrichment is related to two facets of beta diversity for stream invertebrates across the United States [J]. ECOLOGY, 2014,95(6):1569-1578. [16] 姚志良,温韩东,邓 云,等.哀牢山亚热带中山湿性常绿阔叶林树种beta多样性格局形成的驱动力 [J]. 生物多样性, 2020,28(4):445-454. Yao Z L, Wen H D, Deng Y, et al. Driving forces underlying the beta diversity of tree species in subtropical mid-mountain moistevergreen broad-leaved forests in Ailao Mountains [J]. Biodiversity Science, 2020,28(4):445-454. [17] Da Silva N J, Lansac-Tôha F M, Lansac-Tôha F A, et al. Beta diversity patterns in zooplankton assemblages from a semiarid river ecosystem [J]. International Review of Hydrobiology, 2021,106(1): 29-40. [18] 董建宇,孙 昕,詹启鹏,等.莱州湾东岸潮下带大型底栖动物群落beta多样性格局及其驱动因素 [J]. 生物多样性, 2022,30(3):60-69. Dong J Y, Sun X, Zhan Q P, et al. Patterns and drivers of beta diversity of subtidal macrobenthos community on the eastern coast of Laizhou Bay [J]. Biodiversity Science, 2022,30(3):60-69. [19] Li Z, Xing Y, Liu Z, et al. Seasonal changes in metacommunity assembly mechanisms of benthic macroinvertebrates in a subtropical river basin [J]. Science of the Total Environment, 2020,729:139046. [20] Perera I U, Maruoka N, Makino W, et al. Temporal β-diversity of zooplankton at various time scales in a small mountain lake [J]. Limnology, 2021,22(1):89-99. [21] Oikonomou A, Stefanidis K. α-and β-Diversity patterns of macrophytes and freshwater fishes are driven by different factors and processes in Lakes of the Unexplored Southern Balkan biodiversity hotspot [J]. Water, 2020,12(7). [22] Yang Y, Hu R, Lin Q, et al. Spatial structure and β-diversity of phytoplankton in Tibetan Plateau lakes: nestedness or replacement? [J]. Hydrobiologia, 2018,808(1):301-314. [23] 王魏根.长江中下游湖泊螺类beta多样性分析 [J]. 生态科学, 2018,37(6):122-130. Wang W G. Analysis of the beta diversity of snails in the lakes of mid-lower reaches of the Yangtze River [J]. Ecological Science, 2018, 37(6):122-130. [24] Woolway R I, Kraemer B M, Lenters J D, et al. Global lake responses to climate change [J]. Nature Reviews Earth & Environment, 2020, 1(8):388-403. [25] Yuan H, Zhang W, Yin H, et al. Taxonomic dependency of beta diversity for bacteria, archaea, and fungi in a semi-arid lake [J]. Frontiers in Microbiology, 2022,13:998496. [26] Chen J, Qian H, Gao Y, et al. Insights into hydrological and hydrochemical processes in response to water replenishment for lakes in arid regions [J]. Journal of Hydrology, 2020,581:124386. [27] 国家环境保护总局.水和废水监测分析方法-第4版 [M]. 北京:中国环境科学出版社, 2002. State Environmental Protection Administration of China. Water and wastewater monitoring and analysis method [M]. 4th. Beijing: China Environmental Science Press, 2002. [28] 刘月英.中国经济动物志 [M]. 北京:科学出版社, 1979. Liu Y Y. China’s economic zoology [M]. Beijing: Science Press, 1979. [29] 王俊才,王新华.中国北方摇蚊幼虫 [M]. 北京:中国言实出版社, 2011. Wang J C, Wang X H. Northern China chironomus larva [M]. Beijing: Yanshi Press in China, 2011. [30] Pinkas L, Oliphant M S, lverson llk. Food habits of albacore, bluefin tuna, and bonito in California waters [J]. California Department of Fish and Game Fish Bulletin, 1971,152:1-105. [31] 周 东,雷 琦,杜彩丽,等.南淝河和十八联圩湿地底栖动物及其与环境因子的关系 [J]. 水生态学杂志, 2022,43(2):54-61. Zhou D, Lei Q, Du C L, et al. Macroinvertebrate community structure and its relationship with environmental factors in Shibalianwei Wetland and Nanfei River [J]. Journal of Hydroecology, 2022,43(2): 54-61. [32] 刘莹慧,卢俊平,赵胜男,等.基于长时间序列乌梁素海水环境变化趋势及生态补水等关键驱动因子分析(2011~2020年) [J]. 湖泊科学, 2023,35(6):1939-1948. Liu Y H, Lu J P, Zhao S N, et al. Water environment change trend and ecological water replenishment of Lake Wuliangsuhaiand other key driving factors analysis based on long time series (2011~2020) [J]. Journal of Lake Sciences, 2023,35(6):1939-1948. [33] 秦 珊,崔建升,剧泽佳,等.人为干扰条件下白洋淀底栖动物群落变化及其主要环境影响因子分析 [J]. 环境科学学报, 2021,41(3): 1123-1133. Qin S, Cui J S, Ju Z J, et al. Changes of benthic invertebrate community in the Baiyangdian lake and analysis of mainenvironmental factors under the condition of human disturbance [J]. Acta Scientiae Circumstantiae, 2021,41(3):1123-1133. [34] Britton A W, Day J J, Doble C J, et al. Terrestrial-focused protected areas are effective for conservation of freshwater fish diversity in Lake Tanganyika [J]. Biological Conservation, 2017,212:120-129. [35] Braghin L D S M, Almeida B D A, Amaral D C, et al. Effects of dams decrease zooplankton functional β-diversity in river-associated lakes [J]. Freshwater Biology, 2018,63(7):721-730. [36] Maloufi S, Catherine A, Mouillot D, et al. Environmental heterogeneity among lakes promotes hyper β-diversity across phytoplankton communities [J]. Freshwater Biology, 2016,61(5): 633-645. [37] Li B, Tan W, Wen L, et al. Anthropogenic habitat alternation significantly decreases a-and b-diversity of benthopelagic metacommunity in a large floodplain lake [J]. Hydrobiologia, 2020, 847(1):293-307. [38] Bevilacqua S, Terlizzi A. Nestedness and turnover unveil inverse spatial patterns of compositional and functional β-diversity at varying depth in marine benthos [J]. Diversity and Distributions, 2020,26(6): 743-757. [39] Griffiths D. Connectivity and vagility determine beta diversity and nestedness in North American and European freshwater fish [J]. Journal of Biogeography, 2017,44(8):1723-1733. [40] 暴家兵,齐果萍,刘晋仙,等.华北落叶松树皮表面细菌群落多样性及其分布格局 [J]. 微生物学报, 2020,60(1):135-147. Bao J B, Qi G P, Liu J X, et al. Diversity and distribution pattern of bacterial community on bark surface of Larix principis-rupprechtii [J]. Acta Microbiologica Sinica, 2020,60(1):135-147. [41] Bonn A, Storch D, Gaston K J. Structure of the species -energy relationship [J]. Proceedings of the Royal Society of London. Series B: Biological Sciences, 2004,271(1549):1685-1691. [42] Chase J M. Stochastic community assembly causes higher biodiversity in more productive environments [J]. Science, 2010,328(5984):1388-1391. [43] Søndergaard M, Larsen S E, Jørgensen T B, et al. Using chlorophyll a and cyanobacteria in the ecological classification of lakes [J]. Ecological Indicators, 2011,11(5):1403-1412. [44] Zhang Y, Cheng L, Li K, et al. Nutrient enrichment homogenizes taxonomic and functional diversity of benthic macroinvertebrate assemblages in shallow lakes [J]. Limnology and Oceanography, 2019,64(3):1047-1058. [45] 渠晓东,余 杨,张 敏,等.城市河流沉水植物与大型底栖动物群落的关系 [J]. 环境科学, 2018,39(2):783-791. Qu X D, Yang Y, Zhang M, et al. Relationship between macrophyte communities and macroinvertebrate Communities in an urban stream [J]. Environmental Science, 2018,39(2):783-791. [46] 杜雨春子,松 青,包玉海,等.乌梁素海沉水植物群落光谱特征及其受覆盖度的影响分析 [J]. 海洋与湖沼, 2022,53(1):74-83. Du Y C Z, Song Q, Bao Y H, et al. Spectral features of submerged aquatic vegetation under coverage impact in the Ulansuhai Lake [J]. Oceanologia et Limnologia Sinica, 2022,53(1):74-83. |
|
|
|