|
|
Inhibition effect of Microcystis aeruginosa on autotrophic ammonia-oxidizing bacteria |
FENG Qian-qian, XIA Ru-ting, MEI Hong, CHENG Kai |
Hubei Key Laboratory of Ecological Restoration for River-Lakes and Algal Utilization, College of Civil and Environmental Engineering, Hubei University of Technology, Wuhan 430068, China |
|
|
Abstract Using Microcystis aeruginosa FACHB-1027 and autotrophic ammonia-oxidizing bacteria (AOB) Nitrosomonas eutropha CZ-4 and Nitrosomonas nitrosa WH-1 as the research material,this study explored the inhibitory effect of M. aeruginosa on AOB.Also,the molecular weight range of the inhibitory substances was determined by dialysis bag tests and the inhibitory substances composition was analyzed by GC-MS.The results showed that the inhibition efficiency of M. aeruginosa on the ammonia oxidation activities of the two AOBs were 90.7% and 89.4%,respectively,indicating that M. aeruginosa can significantly inhibit the ammonia oxidation activity of AOB in a non-ammonium nitrogen competitive manner.After the M. aeruginosa cultures were treated with a dialysis bag with a molecular weight cut-off of 200 Da,the permeate inhibited the ammonia oxidation activity of AOB by 86.9%. The half inhibitory concentration (IC50) of 5,5-2 methyloxazolidine-2,4-dione in the permeate to the ammonia oxidation activity of AOB was 0.4‰~0.8‰,indicating that the M. aeruginosa can secrete small molecular to inhibit the ammonia oxidation activity of the AOB.
|
Received: 26 April 2024
|
|
|
|
|
[1] 张 辉,彭宇琼,邹贤妮,等,等.极端旱情期大型水库浮游植物群落演替特征——以新丰江水库为例 [J]. 中国环境科学, 2024,44(1): 329-343. Zhang H, Peng Y Q, Zou X N, et al. The characteristics of phytoplankton community structure and its relationship with environmental factors during extreme drought of a large-scale reservoir—take Xinfengjiang Reservoir for example [J]. China Environmental Science, 2024,44(1):329-343. [2] 包美玲,胡智泉,张 强,等.藻菌共生短程脱氮系统构建及污泥菌群结构分析 [J]. 环境工程, 2024,42(2):1-11. Bao M L, Hu Z Q, Zhang Q, et al. Construction of an Shortcut Nitrogen removal system for algal-bacterial symbiosis and analysis of microbial community structure in sludge [J]. Environmental Engineering, 2024,42(2):1-11. [3] Flores E, Herrero A. Nitrogen assimilation and nitrogen control in cyanobacteria [J]. Biochemical Society Transactions, 2005,33(Pt 1): 164-167. [4] 左新宇,梁运祥.微囊藻与硝化细菌在不同种群密度条件下的相互作用 [J]. 环境科学与技术, 2013,36(12):65-70. Zuo X Y, Liang Y X. Interactions between Microcystis sp. and nitrifying bacteria with different population densities [J]. Environmental Science & Technology, 2013,36(12):65-70. [5] 李 洁,张思凡,肖 琳.微囊藻水华对水体中氮转化及微生物的影响 [J]. 环境科学, 2016,37(6):2164-2170. Li Jie, Zhang S F, Xiao L. Effect of water bloom on the nitrogen transformation and the relevant bacteria [J]. Environmental Science, 2016,37(6):2164-2170. [6] 周 娟,李君文,郑金来.亚硝酸细菌研究进展 [J]. 环境科学与技术, 2001,(S2):8-10. Zhou J, Li J W, Zheng J L. The advance of study on ammonia-oxidizing bacteria [J]. Environmental Science & Technology, 2001, (S2):8-10. [7] He Y, Wang R, Ma D, et al. The photosynthetic physiology and growth response of two algae species, Microcystis aeruginosa and Scenedesmus Quadricauda, to different nitrogen forms and concentrations [J]. Applied Ecology & Environmental Research, 2021, 19(3):1607-1624. [8] Hampel J J, Mccarthy M J, Gardner W S, et al. Nitrification and ammonium dynamics in Taihu Lake, China: seasonal competition for ammonium between nitrifiers and cyanobacteria [J]. Biogeo Sciences, 2018,15(3):733-748. [9] 熊 英,向 斯,程 凯.一株高适应性Nitrosomonas eutropha CZ-4的脱氨特性 [J]. 中国环境科学, 2019,39(8):3365-3372. Xiong Y, Xiang S, Cheng K. Nitrogen removal characteristics of a highly adaptable Nitrosomonas eutropha CZ-4 [J]. China Environmental Science, 2019,39(8):3365-3372. [10] 程 凯,熊 英,向 斯.一株高适应性亚硝化单胞菌及其在污水处理中的应用:中国, CN109402026A [P]. 2019-03-01. Cheng K, Xiong Y, Xiang S. A highly adaptable strain of Nitrosomonas and its application in sewage treatment, China, CN109402026A [P]. 2019-03-01. [11] Cock I E, Cheesman M J. A Review of the antimicrobial properties of cyanobacterial natural products [J]. Molecules, 2023,28(20):1-43. [12] Ramos Damos F, Matthiensen A, Colvara W, et al. Antimycobacterial and cytotoxicity activity of microcystins [J]. Journal of Venomous Animals and Toxins including Tropical Diseases, 2015,21(1):1-7. [13] Ronja K, Steffen B, Trang N, et al. Nostotrebin 6related cyclopentenediones and δ-Lactones with broad activity spectrum isolated from the cultivation medium of thecyanobacterium Nostoc sp. CBT1153 [J]. Journal of natural products, 2020,83(2):392-400. [14] Kukla D L, Canchola J, Mills J J. Synthesis of the cyanobacterial antibiotics anaephenes A and B [J]. Journal of natural products, 2020, 83(6):2036-2040. [15] 程 凯,高慧娟,熊 英,等.一株耐高温亚硝化单胞菌及其在污水处理中的应用:中国, CN112625940A [P]. 2021-04-09. Cheng K, Gao H J, Xiong Y. A strain of high-temperature-resistant Nitrosomonas and its application in sewage treatment: China, CN112625940A [P]. 2021-04-09. [16] Joo H S, Hirai M, Shoda M. Characteristics of ammonium removal by heterotrophic nitrification-aerobic denitrification by Alcaligenes faecalis No. 4 [J]. Journal of Bioscience and Bioengineering, 2005, 100(2):184-191. [17] Hu X G, Ouyang S H, Mu L, et al. Effects of Graphene Oxide and Oxidized Carbon Nanotubes on the Cellular Division, Microstructure, Uptake, Oxidative Stress, and Metabolic Profiles [J]. Environmental science & technology, 2015,49(18):10825-10833. [18] Baton D, Glescer L, Greenberg A S. Standard methods for the examination of water and wastewater [J]. Choice Reviews Online, 2012,49(12):49-6910. [19] Xiong J Q, Kurade M B, Kim J R, et al. Ciprofloxacin toxicity and its co-metabolic removal by a freshwater microalga Chlamydomonas mexicana [J]. Journal of Hazardous Materials, 2017,323(PA):212-219. [20] Okkyoung C, Atreyee D, Yu C P, et al. Nitrifying bacterial growth inhibition in the presence of algae and cyanobacteria [J]. Biotechnology and Bioengineering, 2010,107(6):1004-1011. [21] GonzÃilez-Camejo J, Pachés M, MarÃn A, et al. Production of microalgal external organic matter in a Chlorella-dominated culture: influence of temperature and stress factors [J]. Environmental Science: Water Research & Technology, 2020,6(7):1828-1841. [22] 周 涛,李正魁,冯露露.氨氮和硝氮在太湖水华自维持中的不同作用 [J]. 中国环境科学, 2013,33(2):305-311. Zhou T, Li Z K, Feng L L. The different roles of ammonium and nitrate in the bloom self-maintenance of Lake Taihu [J]. China Environmental Science, 2013,33(2):305-311. [23] 邓庭进,叶锦韶,彭 辉,等.微囊藻毒素-LR对恶臭假单胞菌细胞活性和表面特性的影响 [J]. 环境科学, 2015,36(1):252-258. Deng T J, Ye J S, Peng H, et al. Influence of Microcystin-LR on cell viability and surface characteristics of pseudomonas putida [J]. Environmental Science, 2015,36(1):252-258. [24] 杨翠云,李敦海,刘永定.微囊藻毒素对典型微生物生长及生理生化特性的影响 [J]. 水生生物学报, 2008,32(6):818-823. Yang C Y, Li D H, Liu Y D. The effect of microcystin on the grow TH and some physio-biochemical characteristics of representative microbial species [J]. Acta Hydrobiologica Sinica, 2008,32(6):818-823. [25] Kearms K.D, Hunter M.D. Toxin-Producing Anabaena flos-aquae induces settling of Chlamydomonas reinhardtii, a competing motile alga [J]. Microbial Ecology, 2001,42(1):80-86. [26] Doan N T, Rickards R W, Rothschild J M, et al. Allelopathic actions of the alkaloid 12-epi-hapalindole E isonitrile and Calothrixin A from cyanobacteria of the genera Fischerella and Calothrix [J]. Journal of Applied Phycology, 2000,12(3-5):409-416. [27] Arii S, Tsuji K, Tomita K, et al. Cyanobacterial blue color formation during lysis under natural conditions [J]. Applied and Environmental Microbiology, 2015,81(8):2267-2275. [28] 张闻汉,陈照明,张金萍,等.硝化抑制剂对稻田土壤氧化亚氮排放及硝化作用的影响 [J]. 浙江农林大学学报, 2023,40(4):820-827. Zhang W H, Chen Z M, Zhang J P, et al. Effects of nitrification inhibitors on soil N2O emission and nitrification in a paddy soil [J]. Journal of Zhejiang A&F University, 2023,40(4):820-827. [29] 马明坤,陆玉芳,王方嘉,等.不同生物硝化抑制剂对红壤性水稻土N2O排放的影响及其机制 [J]. 土壤, 2024,56(1):1-9. Ma M K, Lu Y F, Wang F J, et al. Effects and mechanisms of different biological nitrification inhibitors on N2O emissions from red paddy soil [J]. Soils, 2024,56(1):1-9. [30] 冀希炜,孟祥睿,吕 媛,等.恶唑烷酮类抗菌药物与革兰氏阳性菌治疗的研究现状 [J]. 中国临床药理学杂志, 2018,34(7):898-902. Ji X W, Meng X R, lv Y, et al. Oxazolidinone antibacterial agents and Gram-positive bacteria treatment [J]. The Chinese Journal of Clinical Pharmacology, 2018,34(7):898-902. [31] 汤倩玲,温福龙,袁 阳,等.5个恶唑烷酮类新化合物对铜绿假单胞菌群体感应系统的抑制研究 [J]. 中国抗生素杂志, 2023,48(10): 1135-1140. Tang Q L, Wen F L, Yuan Y, et al. Study on inhibition of quorum sensing system of Pseudomonas aeruginosa by five novel oxazolidinones [J]. Chinese Journal of Antibiotics, 2023,48(10):1135-1140. [32] Schwarz S, Zhang W J, Du X D, et al. Mobile Oxazolidinone resistance genes in Gram-Positive and Gram-Negative bacteria [J]. Clinical Microbiology Reviews, 2021,34(3): e00188-20. [33] Brenciani A, Morroni G, Schwarz S, et al. Oxazolidinones: mechanisms of resistance and mobile genetic elements involved [J]. The Journal of Antimicrobial Chemotherapy, 2022,77(10):2596-2621. [34] Li M M, Shen W C, Li Y J, et al. Linezolid-induced pancytopenia in patients using Dapagliflozin: a case series [J]. Infection and Drug Resistance, 2022,15:5509-5517. |
|
|
|