|
|
Research progress of nitrate-dependent ferrous oxidation denitrification technology |
XUE Jia-hui1,2, LI Yan-yu1, QIU Xu2,3, XIAO Ju-qiang1, LI Jie1, SONG Guang-qing2 |
1. School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; 2. Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China; 3. School of Architecture and Civil Engineering, Xihua University, Chengdu 610097, China |
|
|
Abstract Nitrate-dependent ferrous oxidation (NDFO) has emerged as a promising autotrophic denitrification technology, effectively addressing key limitations in wastewater treatment, particularly in systems with a low carbon-to-nitrogen (C/N) ratio. NDFO presents substantial economic and environmental advantages, making it an attractive solution for low C/N wastewater treatment. This review critically examines recent advancements in NDFO technology, emphasizing the functional characteristics of various NDFO microorganisms and elucidating the internal reaction mechanisms from both chemical and biological perspectives. We comprehensively analyze the influence of external factors, including temperature, pH, Fe/N ratio, organic carbon sources, and the presence of cations/anions, on the performance of NDFO. Additionally, we explore the role of Fe(III) minerals in the NDFO process and discuss strategies to mitigate cell crust formation. Finally, this paper identifies the existing challenges and limitations of NDFO technology and offers strategic directions for future research.
|
Received: 27 May 2024
|
|
|
|
|
[1] 裴东艳,谢磊,徐斌,等.基于氮氧同位素技术的黄河上游清水河硝酸盐来源解析[J]. 中国环境科学, 2022,42(9):4115-4121. Pei D Y, Xie L, Xue B, et al. Analysis of nitrate sources in the Qingshui River of the Yellow River with nitrogen and oxygen isotope technique. [J]. China Environmental Science, 2022,42(9):4115-4121. [2] 凌郡鸿,张依章,曹英杰,等.基于氮氧同位素的南四湖硝酸盐来源解[J]. 中国环境科学, 2023,43(6):3100-3106. Ling J H, Zhang Y Z, Cao Y J, et al. An analysis of nitrate sources in Nansi Lake based on nitrogen and oxygen isotopes. [J]. China Environmental Science, 2023,43(6):3100-3106. [3] Zhang Q, Xu X J, Zhou X, et al. Recent Advances in Autotrophic Biological Nitrogen Removal for Low Carbon Wastewater: A Review [J]. Water, 2022,14(7):1101. [4] 胡劲涛,信欣.基于电化学系统内Feammox/NDFO耦合工艺脱氮效能和机理研究[J]. 中国环境科学, 2024,44(9):4958-4967. Hu J T, Xin X. Study on the denitrification efficiency and mechanism of Feammox / NDFO coupling process based on electrochemical system [J]. China Environmental Science, 2024,44(9):4958-4967. [5] 于妍,刘宁,廖祖刚,等.铁型反硝化脱氮技术研究进展[J]. 中国环境科学, 2022,42(1):83-91. Yu Y, Liu N, Liao Z G, et al. Research progress of iron-type denitrification removal technology [J]. China Environmental Science, 2022,42(1):83-91. [6] Zhang L H, Li W X, Li J, et al. A novel iron-mediated nitrogen removal technology of ammonium oxidation coupled to nitrate/nitrite reduction: Recent advances [J]. Journal of Environmental Management, 2022,319. [7] Nielsen J L, Nielsen P H. Microbial Nitrate-Dependent Oxidation of Ferrous Iron in Activated Sludg [J]. Environmental Science & Technology, 1998,32(22):3556-3561. [8] Zhang M, Zheng P, Li W, et al. Performance of nitrate-dependent anaerobic ferrous oxidizing (NAFO) process: A novel prospective technology for autotrophic denitrification [J]. Bioresource Technology, 2015,179:543-548. [9] Karanasios K A, Vasiliadou I A, Pavlou S, et al. Hydrogenotrophic denitrification of potable water: A review [J]. Journal of Hazardous Materials, 2010,180(1):20-37. [10] Park J Y, Yoo Y J. Biological nitrate removal in industrial wastewater treatment: which electron donor we can choose [J]. Applied microbiology and biotechnology, 2009,82(3):415-429. [11] Show K Y, Lee D J, Pan X. Simultaneous biological removal of nitrogen-sulfur-carbon: Recent advances and challenges [J]. Biotechnology Advances, 2013,31(4):409-420. [12] Straub K L, Benz M, Schink B, et al. Anaerobic, nitrate-dependent microbial oxidation of ferrous iron [J]. Applied and environmental microbiology, 1996,62(4):1458-1460. [13] Straub K L, Buchholz-Cleven B E E. Enumeration and detection of anaerobic ferrous iron-oxidizing, nitrate-reducing bacteria from diverse European sediments [J]. Applied and Environmental Microbiology, 1998,64(12):4846-4856. [14] Hauck S, Benz M, Brune A, et al. Ferrous iron oxidation by denitrifying bacteria in profundal sediments of a deep lake (Lake Constance) [J]. Fems Microbiology Ecology, 2001,37(2):127-134. [15] Weber K A, Urrutia M M, Churchill P F, et al. Anaerobic redox cycling of iron by freshwater sediment microorganisms [J]. Environmental Microbiology, 2006,8(1):100-113. [16] Laufer K, Roy H, Jorgensen B B, et al. Evidence for the Existence of Autotrophic Nitrate-Reducing Fe(II)-Oxidizing Bacteria in Marine Coastal Sediment [J]. Applied and Environmental Microbiology, 2016,82(20):6120-6131. [17] Ratering S, Schnell S. Nitrate-dependent iron(II) oxidation in paddy soil [J]. Environmental Microbiology, 2001,3(2):100-109. [18] Zhang L Y, Sun H H, Zhang X X, et al. High diversity of potential nitrate-reducing Fe(II)-oxidizing bacteria enriched from activated sludge [J]. Applied Microbiology and Biotechnology, 2018,102(11): 4975-4985. [19] Wang R, Zheng P, Xing Y J, et al. Anaerobic ferrous oxidation by heterotrophic denitrifying enriched culture [J]. Journal of Industrial Microbiology & Biotechnology, 2014,41(5):803-809. [20] Kumaraswamy R, Sjollema K, Kuenen G, et al. Nitrate-dependent Fe(II)EDTA 2- oxidation by Paracoccus ferrooxidans sp. nov., isolated from a denitrifying bioreactor [J]. Systematic and applied microbiology, 2006,29(4):276-86. [21] Zhang T, Shao M F, Ye L. 454Pyrosequencing reveals bacterial diversity of activated sludge from 14sewage treatment plants [J]. Isme Journal, 2012,6(6):1137-1147. [22] Chao T T, Kroontje W. Inorganic nitrogen transformations through the oxidation and reduction of iron [J]. Soil Science Society of America Journal, 1966,30(2):193-196. [23] Pang S Y, Li N, Luo H, et al. Autotrophic Fe-Driven Biological Nitrogen Removal Technologies for Sustainable Wastewater Treatment [J]. Frontiers in Microbiology, 2022,13. [24] Picardal F. Abiotic and microbial interactions during anaerobic transformations of Fe(II) and NO3-[J]. Frontiers in Microbiology, 2012,3. [25] Jamieson J, Prommer H, Kaksonen A H, et al. Identifying and Quantifying the Intermediate Processes during Nitrate-Dependent Iron(II) Oxidation [J]. Environmental Science & Technology, 2018, 52(10):5771-5781. [26] Liu T X, Chen D D, Luo X B, et al. Microbially mediated nitrate- reducing Fe(II) oxidation: Quantification of chemodenitrification and biological reactions [J]. Geochimica Et Cosmochimica Acta, 2019, 256:97-115. [27] Chen D D, Liu T X, Li X M, et al. Biological and chemical processes of microbially mediated nitrate-reducing Fe(II) oxidation by Pseudogulbenkiania sp strain 2002[J]. Chemical Geology, 2018,476: 59-69. [28] Wang Y N, Ren S, Wang P, et al. Autotrophic denitrification using Fe(II) as an electron donor: A novel prospective denitrification process [J]. Science of the Total Environment, 2023,858. [29] Otte J M, Blackwell N, Ruser R, et al. N2O formation by nitrite- induced (chemo) denitrification in coastal marine sediment [J]. Scientific Reports, 2019,9(1):10691. [30] 王朝旭,刘勇超,常智淋,等.改性稻壳生物炭对水中反硝化过程和N2O排放的影响[J]. 中国环境科学, 2023,43(6):2908-2916. Wang C X, Liu Y C, Chang Z L, et al. Effects of modified rice husk-derived biochar on denitrification and N2O emission from water [J]. China Environmental Science, 2023,43(6):2908-2916. [31] Carlson H K, Clark I C, Melnyk R A, et al. Toward a mechanistic understanding of anaerobic nitrate-dependent iron oxidation: balancing electron uptake and detoxification [J]. Frontiers in Microbiology, 2012,3. [32] 陈丹丹.硝酸盐依赖亚铁氧化的生物和非生物过程研究[D]. 广州:中国科学院研究生院(广州地球化学研究所), 2016. Chen D D. Biological and abiotic processes of nitrate-dependent ferrous oxidation [D]. Guangzhou: Graduate Institute of Chinese Academy of Sciences (Guangzhou Institute of Geochemistry), 2016. [33] 王茹,赵治国,郑平,等.铁型反硝化:一种新型废水生物脱氮技术[J]. 化工进展, 2019,38(4):2003-2010. Wang R, Zhao Z G, Zheng P, et al. Iron-type denitrification : a new type of wastewater biological denitrification technology [J] Chemical progress, 2019,38(4):2003-2010. [34] Liu T X, Wang Y, Li X M, et al. Redox dynamics and equilibria of c-type cytochromes in the presence of Fe (II) under anoxic conditions: Insights into enzymatic iron oxidation [J]. Chemical Geology, 2017, 468:97-104. [35] Wang Y, Yuan X, Li X M, et al. Ligand mediated reduction of c-type cytochromes by Fe(II): Kinetic and mechanistic insights [J]. Chemical Geology, 2019,513:23-31. [36] Liu J, Wang Z M, Belchik S M, et al. Identification and characterization of MtoA: a decaheme c-type cytochrome of the neutrophilic Fe(II)-oxidizing bacterium Sideroxydans lithotrophicus ES-1[J]. Frontiers in Microbiology, 2012,3. [37] Ilbert M, Bonnefoy V. Insight into the evolution of the iron oxidation pathways [J]. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 2013,1827(2):161-175. [38] Shi L, Dong H, Reguera G, et al. Extracellular electron transfer mechanisms between microorganisms and minerals [J]. Nature Reviews Microbiology, 2016,14(10):651-662. [39] Weber K A, Achenbach L A, Coates J D. Microorganisms pumping iron: anaerobic microbial iron oxidation and reduction [J]. Nature reviews Microbiology, 2006,4(10):752-764. [40] Liu T X, Chen D D, Li X M, et al. Microbially mediated coupling of nitrate reduction and Fe(II) oxidation under anoxic conditions [J]. FEMS Microbiology Ecology, 2019,95(4):fiz030. [41] Bryce C, Blackwell N, Schmidt C, et al. Microbial anaerobic Fe(II) oxidation - Ecology, mechanisms and environmental implications [J]. Environmental Microbiology, 2018,20(10):3462-3483. [42] Li B H, Tian C Y, Zhang D Y, et al. Anaerobic Nitrate-Dependent Iron (II) Oxidation by a Novel Autotrophic Bacterium, Citrobacter freundii Strain PXL1[J]. Geomicrobiology Journal, 2014,31(2):138-144. [43] Kopf S H, Henny C, Newman D K. Ligand-Enhanced Abiotic Iron Oxidation and the Effects of Chemical versus Biological Iron Cycling in Anoxic Environments [J]. Environmental Science & Technology, 2013,47(6):2602-2611. [44] Pang S Y, Li N, Luo H, et al. Autotrophic Fe-Driven Biological Nitrogen Removal Technologies for Sustainable Wastewater Treatment [J]. Frontiers in Microbiology, 2022,13. [45] Hedrich S, Schlomann M, Johnson D B. The iron-oxidizing proteobacteria [J]. Microbiology-Sgm, 2011,157:1551-1564. [46] Hafenbradl D, Keller M, Dirmeier R, et al. Ferroglobus placidus gen nov, sp nov, a novel hyperthermophilic archaeum that oxidizes Fe2+ at neutral pH under anoxic conditions [J]. Archives of Microbiology, 1996,166(5):308-314. [47] Sorokina A Y, Chernousova E Y, Dubinina G A. Hoeflea siderophila sp nov., a New Neutrophilic Iron-Oxidizing Bacterium [J]. Microbiology, 2012,81(1):59-66. [48] Straub K L, Schonhuber W A, Buchholz-Cleven B E E, et al. Diversity of ferrous iron-oxidizing, nitrate-reducing bacteria and their involvement in oxygen-independent iron cycling [J]. Geomicrobiology Journal, 2004,21(6):371-378. [49] Buchholzcleven B E E, Rattunde B, Straub K L. Screening for genetic diversity of isolates of anaerobic Fe(II)-oxidizing bacteria using DGGE and whole-cell hybridization [J]. Systematic and Applied Microbiology, 1997,20(2):301-309. [50] Chakraborty A, Roden E E, Schieber J, et al. Enhanced Growth of Acidovorax sp Strain 2AN during Nitrate-Dependent Fe(II) Oxidation in Batch and Continuous-Flow Systems [J]. Applied and Environmental Microbiology, 2011,77(24):8548-8556. [51] Byrne-Bailey K G, Weber K A, Chair A H, et al. Completed Genome Sequence of the Anaerobic Iron-Oxidizing Bacterium Acidovorax ebreus Strain TPSY [J]. Journal of Bacteriology, 2010,192(5):1475- 1476. [52] Carlson H K, Clark I C, Blazewicz S J, et al. Fe(II) Oxidation Is an Innate Capability of Nitrate-Reducing Bacteria That Involves Abiotic and Biotic Reactions [J]. Journal of Bacteriology, 2013,195(14):3260- 3268. [53] Mattes A, Gould D, Taupp M, et al. A Novel Autotrophic Bacterium Isolated from an Engineered Wetland System Links Nitrate-Coupled Iron Oxidation to the Removal of As, Zn and S [J]. Water Air and Soil Pollution, 2013,224(4):1490. [54] Chakraborty A, Picardal F. Induction of Nitrate-Dependent Fe(II) Oxidation by Fe(II) in Dechloromonas sp Strain UWNR4and Acidovorax sp Strain 2AN [J]. Applied and Environmental Microbiology, 2013,79(2):748-752. [55] Li B H, Tian C Y, Zhang D Y, et al. Anaerobic Nitrate-Dependent Iron (II) Oxidation by a Novel Autotrophic Bacterium, Citrobacter freundii Strain PXL1 [J]. Geomicrobiology Journal, 2014,31(2):138-144. [56] Senko J M, Dewers T A, Krumholz L R. Effect of oxidation rate and Fe(II) state on microbial nitrate-dependent Fe(III) mineral formation [J]. Applied and Environmental Microbiology, 2005,71(11):7172- 7177. [57] Su J F, Shao S C, Haung T L, et al. Anaerobic nitrate-dependent iron (II) oxidation by a novel autotrophic bacterium, Pseudomonas sp. SZF15 [J]. Journal of Environmental Chemical Engineering, 2015, 3(3):2187-2193. [58] Oshiki M, Ishii S, Yoshida K, et al. Nitrate-Dependent Ferrous Iron Oxidation by Anaerobic Ammonium Oxidation (Anammox) Bacteria [J]. Applied and Environmental Microbiology, 2013,79(13):4087- 4093. [59] Zhang M, Zheng P, Wang R, et al. Nitrate-dependent anaerobic ferrous oxidation (NAFO) by denitrifying bacteria: A perspective autotrophic nitrogen pollution control technology [J]. Chemosphere, 2014,117: 604-609. [60] Li N, Li Y, Lou R T, et al. Effects of Fe(II) and organic carbon on nitrate reduction in surficial sediments of a large shallow freshwater lake [J]. Journal of Environmental Management, 2023,336. [61] Robertson E K, Thamdrup B. The fate of nitrogen is linked to iron(II) availability in a freshwater lake sediment [J]. Geochimica Et Cosmochimica Acta, 2017,205:84-99. [62] Kiskira K, Papirio S, Van Hullebusch E D, et al. Fe(II)-mediated autotrophic denitrification: A new bioprocess for iron bioprecipitation/biorecovery and simultaneous treatment of nitrate-containing wastewaters [J]. International Biodeterioration & Biodegradation, 2017,119:631-648. [63] Mergaert J, Cnockaert M C, Swings J. Thermomonas fusca sp. nov. and Thermomonas brevis sp. nov., two mesophilic species isolated from a denitrification reactor with poly(epsilon-caprolactone) plastic granules as fixed bed, and emended description of the genus Thermomonas [J]. International journal of systematic and evolutionary microbiology, 2003,53(6):1961-19666. [64] 周佳敏,黄廷林,刘茜,等.低C/N亚铁氧化硝酸盐还原菌群脱氮特性[J]. 中国环境科学, 2021,41(8):3723-3732. Zhou J M, Huang T L, Liu Q, et al. Denitrification characteristics of low C / N ferrous iron-oxidizing nitrate-reducing bacteria [J]. China Environmental Science, 2021,41(8):3723-3732. [65] Chen S, Zhou B, Chen H, et al. Iron mediated autotrophic denitrification for low C/N ratio wastewater: A review [J]. Environmental Research, 2023,216:114687. [66] Kiskira K, Papirio S, Pechaud Y, et al. Evaluation of Fe(II)-driven autotrophic denitrification in packed-bed reactors at different nitrate loading rates [J]. Process Safety and Environmental Protection, 2020, 142:317-324. [67] Kappler A, Newman D K J G E C A. Formation of Fe (III)-minerals by Fe (II)-oxidizing photoautotrophic bacteria [J]. Geochimica et Cosmochimica Acta, 2004,68(6):1217-1226. [68] Yan S D, Zhang X P, Zhang H. Persulfate activation by Fe(III) with bioelectricity at acidic and near-neutral pH regimes: Homogeneous versus heterogeneous mechanism [J]. Journal of Hazardous Materials, 2019,374:92-100. [69] Wang P, Li W X, Ren S, et al. Use of sponge iron as an indirect electron donor to provide ferrous iron for nitrate-dependent ferrous oxidation processes: Denitrification performance and mechanism [J]. Bioresource Technology, 2022,357. [70] Wang R, Liu M Y, Liu B Y, et al. Improvement of ferrous ion- dependent nitrate removal (FeNiR) efficiency with acetate as co- substrate [J]. Journal of Water Process Engineering, 2020,37. [71] Deng S, Peng S, Xie B, et al. Influence characteristics and mechanism of organic carbon on denitrification, N2O emission and NO2- accumulation in the iron [Fe(0)]-oxidizing supported autotrophic denitrification process [J]. Chemical Engineering Journal, 2020,393: 124736. [72] Liu Y, Feng C, Sheng Y, et al. Effect of Fe(II) on reactivity of heterotrophic denitrifiers in the remediation of nitrate- and Fe(II)- contaminated groundwater [J]. Ecotoxicology and Environmental Safety, 2018,166:437-445. [73] Yang L, Li W, Liu J, et al. Nitrate-dependent ferrous oxidation: Feasibility, mechanism, and application prospects for wastewater treatment [J]. Journal of Water Process Engineering, 2024,60:105226. [74] Rahman M M, Roberts K L, Grace M R, et al. Role of organic carbon, nitrate and ferrous iron on the partitioning between denitrification and DNRA in constructed stormwater urban wetlands [J]. Science of the Total Environment, 2019,666:608-617. [75] Kiskira K, Papirio S, Fourdrin C, et al. Effect of Cu, Ni and Zn on Fe(II)-driven autotrophic denitrification [J]. Journal of Environmental Management, 2018,218:209-219. [76] Liu Y, Feng C P, Sheng Y Z, et al. Effect of Fe(II) on reactivity of heterotrophic denitrifiers in the remediation of nitrate- and Fe(II)- contaminated groundwater [J]. Ecotoxicology and Environmental Safety, 2018,166:437-445. [77] 范梦雨,李昂,冯亮,等.硝酸盐依赖亚铁氧化细菌在污水处理中的研究进展[J]. 给水排水, 2020,56(S2):103-113. Fan M Y, Li A, Feng L, et al. Research progress of nitrate-dependent ferrous-oxidizing bacteria in wastewater treatment [J]. Water supply and drainage, 2020,56(S2):103-113. [78] Wang Z, Jiang Y, Awasthi M K, et al. Nitrate removal by combined heterotrophic and autotrophic denitrification processes: impact of coexistent ions [J]. Bioresource Technology, 2018,250:838-845. [79] Li G, Puyol D, Carvajal‐Arroyo J M, et al. Inhibition of anaerobic ammonium oxidation by heavy metals [J]. Journal of Chemical Technology & Biotechnology, 2015,90(5):830-837. [80] 王茹,郑平,杨程,等.Cl-、SO42- and PO43-对异养反硝化污泥的胁迫效应[J].中国环境科学, 2016,36(4):1039-1044. Wang R, Zheng P, Yang C, et al. Stress effects of Cl-、SO42- and PO43- on heterotrophic denitrifying sludge [J]. China Environmental Science, 2016,36(4):1039-1044. [81] Posth N R, Canfield D E, Kappler A. Biogenic Fe(III) minerals: From formation to diagenesis and preservation in the rock record [J]. Earth-Science Reviews, 2014,135:103-121. [82] Kiskira K, Papirio S, Van Hullebusch E D, et al. Fe(II)-mediated autotrophic denitrification: A new bioprocess for iron bioprecipitation/ biorecovery and simultaneous treatment of nitrate-containing wastewaters [J]. International Biodeterioration & Biodegradation, 2017,119:631-648. [83] Hafenbradl D, Keller M, Dirmeier R, et al. Ferroglobus placidus gen. nov., sp. nov., a novel hyperthermophilic archaeum that oxidizes Fe2+ at neutral pH under anoxic conditions [J]. Archives of microbiology, 1996,166:308-314. [84] Larese-Casanova P, Haderlein S B, Kappler A. Biomineralization of lepidocrocite and goethite by nitrate-reducing Fe(II)-oxidizing bacteria: Effect of pH, bicarbonate, phosphate, and humic acids [J]. Geochimica et Cosmochimica Acta, 2010,74(13):3721-3734. [85] Schmid G, Zeitvogel F, Hao L, et al. 3-D analysis of bacterial cell-(iron)mineral aggregates formed during Fe(II) oxidation by the nitrate-reducing Acidovorax sp. strain BoFeN1using complementary microscopy tomography approaches [J]. Geobiology, 2014,12(4): 340-361. [86] Wang R, Yang C, Wang W Y, et al. An efficient way to achieve stable and high-rate ferrous ion-dependent nitrate removal (FeNiR): Batch sludge replacement [J]. Science of the Total Environment, 2020,738. [87] Schaefer M V, Gorski C A, Scherer M M. Spectroscopic Evidence for Interfacial Fe(II)-Fe(III) Electron Transfer in a Clay Mineral [J]. Environmental Science & Technology, 2011,45(2):540-545. [88] Yanina S V, Rosso K M. Linked reactivity at mineral-water interfaces through bulk crystal conduction [J]. Science, 2008,320(5873):218- 222. [89] Liu T, Li X, Zhang W, et al. Fe(III) oxides accelerate microbial nitrate reduction and electricity generation by Klebsiella pneumoniae L17[J]. Journal of Colloid and Interface Science, 2014,423:25-32. [90] Ona-Nguema G, Guerbois D, Pallud C, et al. Biogenic Fe(II-III) Hydroxycarbonate Green Rust Enhances Nitrate Removal and Decreases Ammonium Selectivity during Heterotrophic Denitrification [J]. Minerals, 2020,10(9):818. [91] Kappler A, Straub K L. Geomicrobiological Cycling of Iron [J]. Reviews in Mineralogy and Geochemistry, 2005,59(1):85-108. [92] Wang R, Xu S Y, Zhang M, et al. Iron as electron donor for denitrification: The efficiency, toxicity and mechanism [J]. Ecotoxicology and Environmental Safety, 2020,194. [93] Zhang C Y, Xu X H, Yuan L M, et al. Performance enhancement by adding ferrous to a combined modified University of Cape Town and post-anoxic/aerobic-membrane bioreactor [J]. Chemosphere, 2020, 243. [94] Jokai K, Nakamura T, Okabe S, et al. Simultaneous removal of nitrate and heavy metals in a continuous flow nitrate-dependent ferrous iron oxidation (NDFO) bioreacto [J]. Chemosphere, 2021,262. [95] Wang H W, Liang D D, Wang Y N, et al. Fabricating biogenic Fe(III) flocs from municipal sewage sludge using NAFO processes: Characterization and arsenic removal ability [J]. Journal of Environmental Management, 2019,231:268-274. [96] 杨玉萍.铁自养反硝化滤池去除水中硝酸盐的试验研究[D]. 济南:山东建筑大学, 2023. Yang Y P. Experimental study on the removal of nitrate in water by iron autotrophic denitrification filter [D]. Jinan: Shandong Jianzhu University, 2023. [97] Ge Z, Wei D, Zhang J, et al. Natural pyrite to enhance simultaneous long-term nitrogen and phosphorus removal in constructed wetland: three years of pilot study [J]. Water Research, 2019,148:153-161. [98] Pu J, Feng C, Liu Y, et al. Pyrite-based autotrophic denitrification for remediation of nitrate contaminated groundwater [J]. Bioresource technology, 2014,173:117-123. [99] Li R, Morrison L, Collins G, et al. Simultaneous nitrate and phosphate removal from wastewater lacking organic matter through microbial oxidation of pyrrhotite coupled to nitrate reduction [J]. Water research, 2016,96:32-41. [100] Garcia-Gil L J, Golterman H L. Kinetics of FeS-mediated denitrification in sediments from the Camargue (Rhone delta, southern France) [J]. FEMS microbiology ecology, 1993,13(2):85-91. [101] Ma J, Wei J, Kong Q, et al. Synergy between autotrophic denitrification and Anammox driven by FeS in a fluidized bed bioreactor for advanced nitrogen removal [J]. Chemosphere, 2021,280: 130726. [102] Zhang J X, Zhang Y B, Quan X, et al. Bioaugmentation and functional partitioning in a zero valent iron-anaerobic reactor for sulfate- containing wastewater treatment [J]. Chemical Engineering Journal, 2011,174(1):159-165. [103] Zhang Y B, Feng Y H, Yu Q L, et al. Enhanced high-solids anaerobic digestion of waste activated sludge by the addition of scrap iron [J]. Bioresource Technology, 2014,159:297-304. [104] Li J M, Zeng W, Liu H, et al. Performances and mechanisms of simultaneous nitrate and phosphate removal in sponge iron biofilter [J]. Bioresource Technology, 2021,337. [105] Ma D, Wang J, Li H, et al. Simultaneous removal of COD and NH4+-N from domestic sewage by a single-stage up-flow anaerobic biological filter based on Feammox [J]. Environmental Pollution, 2022,314. [106] Li X, Yuan Y, Huang Y, et al. A novel method of simultaneous NH4+and NO3-removal using Fe cycling as a catalyst: Feammox coupled with NAFO [J]. Science of the Total Environment, 2018,631-632: 153-157. [107] Li J M, Zeng W, Liu H, et al. Achieving deep autotrophic nitrogen removal from low strength ammonia nitrogen wastewater in aeration sponge iron biofilter: Simultaneous nitrification, Feammox, NDFO and Anammox [J]. Chemical Engineering Journal, 2023,460. [108] Guo K H, Li W X, Wang Y, et al. Low strength wastewater anammox start-up and stable operation by inoculating sponge-iron sludge: Cooperation of biological iron and iron bacteria [J]. Journal of Environmental Management, 2022,322. [109] Zhang M, Dai M, Xia L, et al. Comparison of Arsenic Adsorption on Goethite and Amorphous Ferric Oxyhydroxide in Water [J]. Water Air and Soil Pollution, 2017,228(11):427. [110] Wang R, Yu L P, Zeb B S, et al. Re-use of wasted sludge to treat industrial pollutants [J]. Water Air and Soil Pollution, 2021,232(3): 107. [111] Chakraborty A, Picardal F. Neutrophilic, nitrate-dependent, Fe(II) oxidation by a Dechloromonas species [J]. World Journal of Microbiology & Biotechnology, 2013,29(4):617-623. [112] Peng C, Sundman A, Bryce C, et al. Oxidation of Fe(II) organic matter complexes in the presence of the mixotrophic nitrate-reducing Fe(II)-oxidizing bacterium Acidovorax sp BoFeN1 [J]. Environmental Science & Technology, 2018,52(10):5753-5763. [113] Wang R, Wang W Y, Liu M Y, et al. Improvement of ferrous ion-dependent nitrate removal (FeNiR) process with chelating ferrous ion as substrate [J]. Journal of Environmental Management, 2020,271. [114] Cheng K, Li H, Yuan X, et al. Hematite-promoted nitrate-reducing Fe(II) oxidation by Acidovorax sp. strain BoFeN1: Roles of mineral catalysis and cell encrustation [J]. Geobiology, 2022, 20(6):810-822. [115] Klueglein N, Zeitvogel F, Stierhof Y D, et al. Potential Role of Nitrite for Abiotic Fe(II) Oxidation and Cell Encrustation during Nitrate Reduction by Denitrifying Bacteria [J]. Applied and Environmental Microbiology, 2014,80(3):1051-1061. [116] Benzerara K, Miot J, Morin G, et al. Significance, mechanisms and environmental implications of microbial biomineralization [J]. Comptes Rendus Geoscience, 2011,343(2/3):160-167. [117] 王鹏.硝酸盐依赖型二价铁氧化菌的富集培养及影响因素研究[D]. 兰州:兰州交通大学, 2022. Wang P. Study on enrichment culture and influencing factors of nitrate dependent anaerobic ferrous oxidation microorganism [D]. Lanzhou: Lanzhou Jiaotong University, 2022. [118] Tian T, Zhou K, Li Y S, et al. Recovery of Iron-Dependent Autotrophic Denitrification Activity from Cell-Iron Mineral Aggregation-Induced Reversible Inhibition by Low-Intensity Ultrasonication [J]. Environmental Science & Technology, 2022,56(1): 595-604. |
|
|
|