|
|
The effects of land use patterns on carbon and nitrogen cycling microbe in a river of the upper reaches of the Yellow River |
YE Ling1,2, HUANG Jing-jie1,2, YIN Qiong-lin1,2, XIE Lei1,4, BAI Xue2, PANG Qing-qing1,4, ZHAO Ju3, YANG Wei-gong3, PENG Fu-quan1,4, ZHU Xiang1,4, YANG Fei1,4, WANG Long-mian1,4 |
1. Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China; 2. College of Environment, Hohai University, Nanjing 210098, China; 3. Guyuan Ecological Environment Monitoring Station, Guyuan 756099, China; 4. National Joint Research Center for Ecological Conservation and High Quality Development of the Yellow River Basin, Beijing 100012, China |
|
|
Abstract In this study, the Qingshui River, a typical river in arid and semi-arid areas of the upper reaches of the Yellow River, was investigated. The metagenomic technology was used to reveal the impact of land use on carbon and nitrogen cycling microorganisms in the water bodies. The findings revealed the water quality was less polluted in forest reaches, the average concentrations of NH4+-N, NO3--N, TN, and COD were 0.19, 1.35, 1.66, and 21.92mg/L, respectively. Conversely, the NH4+-N(4.23mg/L) and COD(48.8mg/L) concentration elevated in the water body in urban and rural reaches, while NO3--N(21.62mg/L) and TN(31.59mg/L) contents increased in agricultural reaches. The relative abundance of the nitrification genes amoAB, nxrAB and the carbon cycling genes sucCD, IDH13, mdh, porAB, and gap2 was higher in forested reaches, while the relative abundance of the denitrification genes napAB, nirKS, and nosZ was higher in urban and rural area reaches, and in agricultural area reaches. The dominant microbial species of carbon and nitrogen functional were higher in forested reaches and urban and rural reaches with 20 species than in agricultural reaches with 15species. The microbial network showed that the number of correlation edges was less than 35 in urban and rural reaches and agricultural reaches, and more than 35 in forested reaches, thus the microbial network structures were notably more complex in forested reaches. In urban and rural reaches, Paracoccus and Sphingomonas were significantly negatively correlated with NH4+-N concentration, while Thalassiosira were significantly positively correlated with NO3--N concentration. In agricultural reaches, Leptothrix and Methylocystis were significantly negatively correlated with NH4+-N and COD contents; while Acidovorax, Flavobacterium, and Hydrogenophaga were significantly negatively correlated with NO3--N concentration.
|
Received: 30 May 2024
|
|
|
|
|
[1] 王怡冰,李成亮,张鹏,等.济南南部山区土地利用/覆被变化对碳储量的影响研究[J]. 中国环境科学, 2024,44(7):3986-3998. Wang Y B, Li C L, Zhang P, et al. Research on the impact of land use/cover change on carbon storage in the southern mountain area of Jinan [J]. China Environmental Science, 2024,44(7):3986-3998. [2] 朱磊,李怀恩,李家科.干旱半干旱地区重污染河流水质水量响应关系预测研究[J]. 环境科学学报, 2012,32(10):2617-2624. Zhu L, Li H E, Li J K. Study on the response relationship between water quality and quantity of heavy pollution river in the arid and semi-arid areas [J]. Acta Scientiae Circumstantiae, 2012,32(10):2617- 2624. [3] Kim H R, Yu S, Oh J, et al. Assessment of nitrogen application limits in agro-livestock farming areas using quantile regression between nitrogen loadings and groundwater nitrate levels [J]. Agriculture Ecosystems & Environment, 2019,286,106660. [4] 代孟均,张兵,杜倩倩,等.不同缓冲区的土地利用方式对地表水水质的影响:以海河流域天津段为例[J]. 环境科学, 2024,45(3): 1512-1524. Dai M J, Zhang B, Du Q Q, et al. Effects of land use types on water quality at different buffer scales: Tianjin section of the Haihe River basin as an example [J]. Environmental Science, 2024,45(3):1512- 1524. [5] 梁旭,刘华民,纪美辰,等.北方半干旱区土地利用/覆被变化对湖泊水质的影响:以岱海流域为例(2000~2018年) [J]. 湖泊科学, 2021, 33(3):727-738. Liang X, Liu H M, Ji M C, et al. Effects of land use /cover change on lake water quality in the semi-arid region of northern China: A case study in Lake Daihai Basin (2000~2018) [J]. Journal of Lake Sciences, 2021,33(3):727-738. [6] Zhang Y, Huo Y, Zhang Z R, et al. Deciphering the influence of multiple anthropogenic inputs on taxonomic and functional profiles of the microbial communities in Yitong River, Northeast China [J]. Environmental Science and Pollution Research, 2022,29(26):39973- 39984. [7] 王世强,赵增锋,邱小琮,等.清水河干流水质空间分布特征及季节性变化[J]. 西南农业学报, 2021,34(2):386-391. Wang S Q, Zhao Z F, Qiu X C, et al. Spatial-temporal characteristics of water environmental quality in mainstream of Qingshui River [J]. Southwest China Journal of Agricultural Sciences, 2021,34(2):386- 391. [8] HJ 828—2017《水质化学需氧量的测定重铬酸盐法》 [S]. HJ 828—2017《Water quality-Determination of the chemical oxygen demand-Dichromate method》 [S]. [9] HJ 636—2012《水质总氮的测定碱性过硫酸钾消解紫外分光光度法》 [S]. HJ 636—2012《Water quality-Determination of total nitrogen- Alkaline potassium persulfate digestion UV spectrophotometric method》 [S]. [10] HJ 535—2009《水质氨氮的测定纳氏试剂分光光度法》 [S]. HJ 535—2009《Water quality—Determination of ammonia nitrogen—Nessler’s reagent spectrophotometry》 [S]. [11] HJ/T 346—2007《水质硝酸盐氮的测定紫外分光光度法(试行)》 [S]. HJ/T 346—2007《Water quality-Determination of nitrate-nitrogen- Ultraviolet spectrophotometry》 [S]. [12] GB 7493—87《水质亚硝酸盐氮的测定分光光度法》 [S]. GB 7493—87《Water quality-Determination of nitrogen(nitrite)- Spectrophotometric method》 [S]. [13] Noguchi H, Park J, Takagi T. Metagene: prokaryotic gene finding from environmental genome shotgun sequences [J]. Nucleic Acids Research, 2006,34(19):5623-5630. [14] Fu L M, Niu B F, Zhu Z W, et al. CD-HIT: accelerated for clustering the next-generation sequencing data [J]. Bioinformatics, 2012,28(23): 3150-3152. [15] Buchfink B, Reuter K, Drost H G. Sensitive protein alignments at tree-of-life scale using DIAMOND [J]. Nature Methods, 2021, 18(4):366-368. [16] 张千千,李向全,王效科,等.城市路面降雨径流污染特征及源解析的研究进展[J]. 生态环境学报, 2014,23(2):352-358. Zhang Q Q, Li X Q, Wang X K, et al. Research advance in the characterization and Source apportionment of pollutants in urban roadway runoff [J]. Ecology and Environmental Sciences, 2014,23(2): 352-358. [17] 刘交,潘国强,杨帆,等.旱季污水处理厂污水中溶解性有机质特征及其与氮素关系[J/OL]. http://kns.cnki.net/kcms/detail/11.5972.X.20240205.1635.004.html2024-02-07/2024-04-04. Liu J, Pan G Q, Yang F, et al. Characteristics of dissolved organic matters and their relationship with nitrogen in wastewater from sewage treatment plants in dry season [J/OL]. http://kns.cnki.net/kcms/detail/11.5972.X.20240205.1635.004.html2024-02-07/2024-04-04. [18] Chen X, Qin X B, Li Y, et al. Residential and agricultural soils dominate soil organic matter loss in a typical agricultural watershed of subtropical China [J]. Agriculture Ecosystems & Environment, 2022, 338,108100. [19] 张东,葛文彪,赵爱萍,等.城镇生活污水处理厂出水硝酸盐浓度及同位素组成的影响因素[J]. 环境科学, 2023,44(6):3301-3308. Zhang D, Ge W B, Zhao A P, et al. Factors affecting nitrate concentrations and nitrogen and oxygen isotope values of effluents from waste water treatment plant [J]. Environmental Science, 2023, 44(6):3301-3308. [20] 华国清.黄河流域西固段生态保护问题研究[J]. 农业科技与信息, 2023,(12):86-89. Hua G Q. Research on ecological protection problems in Xigu reach of the Yellow River basin [J]. Agricultural Technology and Information, 2023,(12):86-89. [21] 邓华,高明,龙翼,等.石盘丘小流域不同土地利用方式下土壤氮磷流失形态及通量[J]. 环境科学, 2021,42(1):251-262. Deng H, Gao M, Long Y, et al. Characteristics of soil nitrogen and phosphorus losses under different land-use schemes in the Shipanqiu watershed [J]. Environmental Science, 2021,42(1):251-262. [22] Yuan L X, Loque D, Kojima S, et al. The organization of high-affinity ammonium uptake in Arabidopsis roots depends on the spatial arrangement and biochemical properties of AMT1-type transporters [J]. Plant Cell, 2007,19(8):2636-2652. [23] Wang H, Xiong X, Wang K H, et al. The effects of land use on water quality of alpine rivers: A case study in Qilian Mountain, China [J]. Science of the Total Environment, 2023,875,162696. [24] Huang S C, Zhang B, Zhao Z W, et al. Metagenomic analysis reveals the responses of microbial communities and nitrogen metabolic pathways to polystyrene micro(nano)plastics in activated sludge systems [J]. Water Research, 2023,241,120161. [25] 刘爽,姚佳妮,张钧杰,等.荒漠豆科灌丛根际土壤氨氧化和反硝化微生物功能基因丰度及群落多样性特征[J/OL]. http://kns.cnki.net/kcms/detail/62.1105.S.20240108.0851.024.html 2024-01-08/2024-04-05. Liu S, Yao J N, Zhang J J, et al. Functional gene abundance and community diversity of ammonia-oxidizing and denitrifying microorganisms in the rhizosphere soil of desert leguminous shrubs [J/OL]. http://kns.cnki.net/kcms/detail/62.1105.S.20240108.0851.024.html 2024-01-08/2024-04-05. [26] 刘军.戊唑醇在水体中的光化学降解研究[D]. 合肥:安徽农业大学, 2006. Liu J. Studies on photochemical degradation of tebuconazole in aqueous solution [D]. Hefei: Anhui Agricultural University, 2006. [27] Li X, Wang A C, Wan W J, et al. High Salinity Inhibits Soil Bacterial Community Mediating Nitrogen Cycling [J]. Applied and Environmental Microbiology, 2021,87(21),e01366-21. [28] 贾仲君,翁佳华,林先贵,等.氨氧化古菌的生态学研究进展[J]. 微生物学报, 2010,50(4):431-437. Jia Z J, Weng J H, Lin X G, et al. Microbial ecology of archaeal ammonia oxidation—A review [J]. Acta Microbiologica Sinica, 2010, 50(4):431-437. [29] Li M J, Li R, Gao Y Q, et al. Nitrate bioreduction dynamics in hyporheic zone sediments under cyclic changes of chemical compositions [J]. Journal of Hydrology, 2020,585,124836. [30] Blaud A, Van der Zaan B, Menon M, et al. The abundance of nitrogen cycle genes and potential greenhouse gas fluxes depends on land use type and little on soil aggregate size [J]. Applied Soil Ecology, 2018,125:1-11. [31] Kasak K, Espenberg M, Anthony T L, et al. Restoring wetlands on intensive agricultural lands modifies nitrogen cycling microbial communities and reduces N2O production potential [J]. Journal of Environmental Management, 2021,299,13562. [32] Liu S Q, Wang C, Hou J, et al. Effects of Ag NPs on denitrification in suspended sediments via inhibiting microbial electron behaviors [J]. Water Research, 2020,171,115436. [33] Khurana S, Abramoff R, Bruni E, et al. Interactive effects of microbial functional diversity and carbon availability on decomposition - A theoretical exploration [J]. Ecological Modelling, 2023,486,110507. [34] 付若仙,余景松,张云彬,等.氮添加下城市森林土壤呼吸动态变化及其影响因素[J]. 应用生态学报, 2020,31(3):744-752. Fu R X, Yu J S, Zhang Y B, et al. Dynamics of soil respiration and its influencing factors in urban forests under nitrogen addition [J]. Chinese Journal of Applied Ecology, 2020,31(3):744-752. [35] 周连玉,巨家升,马学兰,等.农田土壤自养微生物固碳潜力及影响因素的研究进展[J]. 山东农业科学, 2023,55(6):157-165. Zhou L Y, Ju J L, Ma X L, et al. Research progress of carbon sequestration potential of autotrophic microorganisms in farm land soil and influencing factors [J]. Shandong Agricultural Sciences, 2023, 55(6):157-165. [36] 李懿,杨子松.岷江流域不同土地利用方式下的土壤微生物特征及其与土壤养分的关系[J]. 水土保持研究, 2020,27(1):33-38,46. Li Y, Yang Z S. Soil nutrients and soil microbial characteristics and their relationships under different land use types in Minjiang River basin [J]. Research of Soil and Water Conservation, 2020,27(01):33- 38,46. [37] 杨莉莉,李文譞,彭钰卓,等.铁氨氧化技术在废水脱氮中的应用研究进展[J]. 中国环境科学, 2023,43(6):2948-2959. Yang L L, Li W X, Peng Y Z, et al. Research progress on the application of Feammox for nitrogen removal from wastewaters [J]. China Environmental Science, 2023,43(6):2948-2959. [38] Fall C, Barrón-Hernández L M, Gonzaga-Galeana V E, et al. Ordinary heterotrophic organisms with aerobic storage capacity provide stable aerobic granular sludge for C and N removal [J]. Journal of Environmental Management, 2022,308,114662. [39] Dong X Q, Huang Z D, Peng X X, et al. Advanced simultaneous nitrogen and phosphorus removal for non-sterile wastewater through a novel coupled yeast-sludge system: Performance, microbial interaction, and mechanism [J]. Chemosphere, 2022,309,136645. [40] Jia L X, Liu H, Kong Q, et al. Interactions of high-rate nitrate reduction and heavy metal mitigation in iron-carbon-based constructed wetlands for purifying contaminated groundwater [J]. Water Research, 2020,169,115285. [41] Jiang Y, Li R, Yang Y N, et al. Migration and evolution of dissolved organic matter in landfill leachate-contaminated groundwater plume [J]. Resources Conservation and Recycling, 2019,151,104463. [42] 赵天涛,陈沛沛,张晟,等.异养硝化-好氧反硝化菌氮代谢机理的研究进展[J]. 重庆理工大学学报(自然科学), 2022,36(1):194-203. Zhao T T, Chen P P, Zhang S, et al. Research progress on nitrogen metabolism mechanism of heterotrophic nitrification aerobic denitrification bacteria [J]. Journal of Chongqing University of Technology (Natural Science), 2022,36(1):194-203. [43] 钟锦锋.锰氧化还原驱动生物膜氮转化与除磷除锰的性能研究[D]. 合肥:安徽农业大学, 2023. Zhong J F. Performance of nitrogen conversion and phosphorus and manganese removal in biofilms driven by manganese redox [D]. Hefei: Anhui Agricultural University, 2023. [44] Bedics A, Tancsics A, Banerjee S, et al. Acidovorax benzenivorans sp. nov., a novel aromatic hydrocarbon-degrading bacterium isolated from a xylene-degrading enrichment culture [J]. International Journal of Systematic and Evolutionary Microbiology, 2024,74(1):006219. [45] Yang Z C, Zhou Q, Sun H M, et al. Metagenomic analyses of microbial structure and metabolic pathway in solid-phase denitrification systems for advanced nitrogen removal of wastewater treatment plant effluent: A pilot-scale study [J]. Water Research, 2021, 196,117067. [46] 李小妹,严平,郭金蕊,等.宁夏东南部清水河、苦水河流域苦咸水水质综合评价[J]. 干旱区资源与环境, 2014,28(2):136-142. Li X M, Yan P, Guo J R, et al. Comprehensive evaluation of the brackish water quality in the Qingshui river and Kushui river basin,Southeast Ningxia [J]. Journal of Arid Land Resources and Environment, 2014,28(2):136-142. [47] Meng F S, Huang W W, Liu D F, et al. Application of aerobic granules-continuous flow reactor for saline wastewater treatment: Granular stability, lipid production and symbiotic relationship between bacteria and algae [J]. Bioresource Technology, 2020,295,122291. [48] Li L, Mohamad O A A, Ma J B, et al. Synergistic plant-microbe interactions between endophytic bacterial communities and the medicinal plant Glycyrrhiza uralensis F. [J]. Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology, 2018,111(10):1735-1748. [49] 李清毅,张国民,王新烨,等.微藻在蓝碳中的作用机制及影响因素[J]. 安徽农业科学, 2024,52(3):71-76. Li Q Y, Zhang G M, Wang X Y, et al. Mechanism of action and influence factor of microalgae in blue carbon [J]. Anhui Agricultural Sciences, 2024,52(3):71-76. [50] 王浩泽.污水处理系统中抗生素抗性基因分布特征及其传播风险研究[D]. 苏州:苏州科技大学, 2022. Wang H Z. Distribution and transmission risk of antibiotic resistance genes in wastewater treatment systems [D]. Suzhou:Suzhou University of Science and Technology, 2022. [51] Liu X, Pan B Z, Huang Z Y, et al. Anthropogenic land uses drive shifts in denitrification-related microbiota in freshwater river ecosystems [J]. Land Degradation & Development, 2023,34(1):269-282. [52] Wang L F, Wang Z Y, Li Y, et al. Deciphering solute transport, microbiota assembly patterns and metabolic functions in the hyporheic zone of an effluent-dominated river [J]. Water research, 2024,251, 121190. [53] 刘道玉.脱氮副球菌的好氧反硝化特性及在水体氮素转化中的作用研究[D]. 南京:南京农业大学, 2012. Liu D Y. The aerobic denitrification characteristics of Paracoccus Denitrificans and its effect for nitrogen transformation in water [D]. Nanjing: Nanjing Agricultural University, 2012. [54] Keller M D, Kiene R P, Matrai P A, et al. Production of glycine betaine and dimethylsulfoniopropionate in marine phytoplankton. II. N- limited chemostat cultures [J]. Marine Biology, 1999,135(2):249-257. [55] 马阳阳.平原区城郊型河流微生物群落结构与氮代谢研究[D]. 北京:中国环境科学研究院, 2023. Ma Y Y. Study on microbial community structure and nitrogen metabolism in suburban rivers of plain area [D]. Beijing: Chinese Research Academy of Environmental Sciences, 2023. [56] 史玉娇,李文宝,郭鑫.黄河内蒙段开河期细菌群落结构特征研究[J]. 中国环境科学, 2024,44(3):1487-1496. Shi Y J, Li W B, Guo x. Characterization of bacterial community structure during the opening period of the Yellow River in Inner Mongolia [J]. China Environmental Science, 2024,44(3):1487-1496. |
[1] |
TANG Kai, SONG Can-hui, CAO Qian-fei, AN Tian-yi, LIU Yang, ZHOU Fan, DU Gui-quan, SUN Fa-qian, CHEN Chong-jun. Pilot application study of the LEP-N-MBR system[J]. CHINA ENVIRONMENTAL SCIENCECE, 2025, 45(2): 727-735. |
|
|
|
|