|
|
Synthesis of Ru confined in MFI zeolites catalyst and its study on the catalytic combustion performance of propane |
WANG Jing-jing1, XIA Liang-hui1, WU Ya-ni1, LIU Yu-jie1, XU He1, LIU Qi-yuan1, LIU Ji-chen1, JIAN Yan-fei1, HE Chi1,2 |
1. State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China; 2. National Engineering Laboratory for VOCs Pollution Control Material & Technology, Beijing 101408, China |
|
|
Abstract Three Ru-based catalysts were synthesized using in-situ synthesis, impregnation, and deposition-precipitation methods in combination with MFI zeolites to investigate their catalytic oxidation activity toward propane (C3H8). The catalyst synthesized via the in-situ method, denoted as Ru@MFI, exhibited the highest low-temperature oxidation activity, achieving a 90% conversion rate at 270°C, along with remarkable thermal stability at high temperatures and hydrophobicity. Characterization techniques, including X-ray diffraction (XRD), N2 adsorption-desorption, high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), and temperature-programmed desorption of CO (CO-TPD), revealed that Ru confined within the MFI zeolite channels possessed the smallest particle size and highest dispersion, thereby increasing the number of active Ru sites. Further characterization using Raman spectroscopy and hydrogen temperature-programmed reduction (H2-TPR) indicated that interactions between Ru and the MFI framework led to a redistribution of charge around Ru or oxygen, enhancing the reduction capabilities. Consequently, the Ru@MFI catalyst demonstrated superior propane oxidation activity. Additionally, the geometric confinement within the MFI channels maintained the stability and dispersion of Ru species during high-temperature calcination, effectively preventing Ru aggregation and further ensuring the catalyst's high-temperature thermal stability.
|
Received: 07 June 2024
|
|
|
|
|
[1] 李凌波,宫 超,程梦婷,等.红外掩日遥感监测炼油厂非甲烷烷烃排放通量 [J]. 中国环境科学, 2022,42(7):3046-3057. Li L B, Gong C, Cheng M T, et al. Measurement of emission fluxes of total non-methane alkanes from refineries using solar occultation flux remote sensing technique [J]. China Environmental Science, 2022, 42(7):3046-3057. [2] Pozzer A, Pollmann J, Taraborrelli D, et al. Observed and simulated global distribution and budget of atmospheric C2-C5 alkanes [J]. Atmospheric Chemistry and Physics, 2010,10(9):4403-4422. [3] 张 烁,吴卫红,杨 洋,等.老化对钴铈基催化剂催化氧化丙烷的影响 [J]. 中国环境科学, 2021,41(2):614-621. Zhang S, Wu W H, Yang Y, et al. Effect of aging on propane catalytic oxidation over Co-Ce catalyst [J]. China Environmental Science, 2021,41(2):614-621. [4] He C, Cheng J, Zhang X, et al. Recent advances in the catalytic oxidation of volatile organic compounds: a review based on pollutant sorts and sources [J]. Chemical Reviews, 2019,119(7):4471-4568. [5] Hodnebrog Ø, Dalsøren S B, Myhre G. Lifetimes, direct and indirect radiative forcing, and global warming potentials of ethane (C2H6), propane (C3H8), and butane (C4H10) [J]. Atmospheric Science Letters, 2018,19(2):e804. [6] Helmig D, Rossabi S, Hueber J, et al. Reversal of global atmospheric ethane and propane trends largely due to US oil and natural gas production [J]. Nature Geoscience, 2016,9(7):490-495. [7] 唐 铨,郭杨龙,詹望成,等.用于丙烷催化燃烧的Pd_xPt_y-ZSM-5/ Cordierite整体式催化剂 [J]. 化工学报, 2019,70(3):944-950. Tang Q, Guo Y L, Zhan W C, et al. Catalytic combustion of propane over PdxPty-ZSM-5/Cordierite monolithic catalyst [J]. CIESC Journal, 2019,70(3):944-950. [8] Xia L, Jian Y, Liu Q, et al. Boosted light alkane deep oxidation via metal bond length modulation-Induced C-C Bond Preferential Activation [J]. Environmental Science & Technology, 2024,58(7): 3472-3482. [9] Wang L, Wang L, Meng X, et al. New Strategies for the Preparation of Sinter-Resistant Metal-Nanoparticle-Based Catalysts [J]. Advanced Materials, 2019,31(50):1901905. [10] 彭洪根,谢小强,贺天瑶,等.分子筛封装型催化材料净化VOCs研究进展 [J]. 南昌大学学报(工科版), 2023,45(3):205-215. Peng H G, Xie X Q, He T Y, et al. Advances in molecular sieve encapsulated catalytic materials for the purification of VOCs [J]. Journal of Nanchang University (Engineering & Technology), 2023, 45(3):205-215. [11] 付晓玥,冯 静,周 越,等.silicalite-1分子筛载体在丙烷脱氢中的应用 [J]. 石油化工, 2023,52(8):1047-1053. Fu X Y, Feng J, Zhou Y, et al. Application of silicalite-1zeolite support in propane dehydrogenation [J] Petrochemical Technology, 2023, 52(8):1047-1053. [12] 高明洋,龚忠苗,翁雪霏,等.MFI分子筛限域空间内Pd催化剂上甲烷燃烧(英文) [J]. Chinese Journal of Catalysis, 2021,42(10):1689-1699. Gao M Y, Gong Z M, Weng X F, et al. Methane combustion over palladium catalyst within the confined space of MFI zeolite [J]. Chinese Journal of Catalysis, 2021,42(10):1689-1699. [13] 许晓安,唐 学,邓相洋,等.一步水热法制备封装限域Pt@H-ZSM-5及其催化丙烷脱氢 [J]. 硅酸盐学报, 2022,50(1):254-262. Xu X A, Tang X, Deng X Y, et al. One-step hydrothermal preparation of encapsulated Pt@H-ZSM-5 and its performance for propylene [J]. Journal of the Chinese Ceramic Society, 2022,50(01):254-262. [14] Sun Q, Wang N, Zhang T, et al. Zeolite-encaged single-atom Rhodium catalysts: highly-efficient hydrogen generation and shape- selective tandem hydrogenation of nitroarenes [J]. Angewandte Chemie-International Edition, 2019,58(51):18570-18576. [15] Hu Z, Wang Z, Guo Y, et al. Total oxidation of propane over a Ru/CeO2 catalyst at low temperature [J]. Environmental Science & Technology, 2018,52(16):9531-9541. [16] Okal J, Zawadzki M. Influence of catalyst pretreatments on propane oxidation over Ru/gamma-Al2O3 [J]. Catalysis Letters, 2009,132(1/2): 225-34. [17] Wu J Y, Chen B, Yan J R, et al. Ultra-active Ru supported on CeO2 nanosheets for catalytic combustion of propane: experimental insights into interfacial active sites [J]. Chemical Engineering Journal, 2022, 438:135501. [18] 金晓东,曾利辉,苏雅文,等.催化燃烧催化剂的水热稳定性研究进展 [J]. 现代化工, 2023,43(S2):48-52. Jin X D, Zeng L H, Su Y W, et al. Research progress on hydrothermal stability of catalysts for catalytic combustion [J]. Modern Chemical Industry, 2023,43(S2):48-52. [19] 曹 敏,毛玉娇,王倩倩,等.金属催化剂烧结机制及抗烧结策略 [J]. 化工进展, 2023,42(2):744-755. Cao M, Mao Y J, Wang Q Q, et al. Sintering mechanism and sintering-resistant strategies for metal-based catalyst [J]. Chemical Industry and Engineering Progress, 2023,42(2):744-755. [20] 李恒宇,李继威,熊海峰.金属纳米催化剂的高温烧结及其抑制机理 [J]. 厦门大学学报(自然科学版), 2020,59(5):702-712. Li H Y, Li J W, Xiong H F. Sintering and its inhibition mechanism of metal nanocatalysts under high temperature [J]. Journal of Xiamen University (Natural Science), 2020,59(5):702-712. [21] 乔 彤,刘长红,柳志刚,等.载体平衡离子对MnOx/ZSM-5催化NH3-SCR性能影响 [J]. 中国环境科学, 2021,41(7):3176-3183. Qiao T, Liu C H, Liu Z G, et al. The effect of equilibrium ion on the NH3-SCR performance of MnOx/ZSM-5catalysts [J]. Environmental Science & Technology, 2021,41(7):3176-3183. [22] 冀 钟,赵彦玲,陈雨濛,等.ZSM-5分子筛对典型涂装VOCs的吸附性能及机理研究 [J]. 化工学报, 2024,75(6):2332-2343. Ji Z, Zhao Y L, Chen Y M, et al. Adsorption performance and mechanism of ZSM-5 molecular sieves on typical coating VOCs [J]. Environmental Science & Technology, 2024,75(6):2332-2343. [23] Winter L R, Ashford B, Hong J, et al. Identifying surface reaction intermediates in plasma catalytic ammonia synthesis [J]. ACS Catalysis, 2020,10(24):14763-74. [24] Motagamwala A H, Dumesic J A. Microkinetic modeling: A tool for rational catalyst design [J]. Chemical Reviews, 2021,121(2):1049-1076. [25] Yang H, Li G, Jiang G, et al. Heterogeneous selective oxidation over supported metal catalysts: from nanoparticles to single atoms [J]. Applied Catalysis B: Environmental, 2023,325:122384. [26] Garcia G, Arriola E, Chen WH, et al. A comprehensive review of hydrogen production from methanol thermochemical conversion for sustainability [J]. Energy, 2021,217:119384. [27] Huang J, Jiang Y, An T, et al. Increasing the active sites and intrinsic activity of transition metal chalcogenide electrocatalysts for enhanced water splitting [J]. Journal of Materials Chemistry A, 2020,8(48): 25465-25498. [28] Mohd Adli N, Shan W, Hwang S, et al. Engineering atomically dispersed FeN4 active sites for CO2 electroreduction [J]. Angewandte Chemie International Edition, 2021,60(2):1022-1032. [29] Liu H, Kaya H, Lin Y T, et al. Vibrational spectroscopy analysis of silica and silicate glass networks [J]. Journal of the American Ceramic Society, 2022,105(4):2355-2384. [30] Liu H, Hahn S H, Ren M, et al. Searching for correlations between vibrational spectral features and structural parameters of silicate glass network [J]. Journal of the American Ceramic Society, 2020,103(6): 3575-3589. [31] Dubray F, Dib E, Medeiros-Costa I, et al. The challenge of silanol species characterization in zeolites [J]. Inorganic Chemistry Frontiers, 2022,9(6):1125-1133. [32] Luo S, Wang T, Qi L, et al. Titrating controlled defects into Si-LTA zeolite crystals using multiple organic structure-directing agents [J]. Chemistry of Materials, 2022,34(4):1789-1799. [33] Safari M, Haghtalab A, Roghabadi F A. Tuning the strong metal support interaction of the Fischer-Tropsch synthesis silica-coated cobalt-based nano-catalyst [J]. International Journal of Hydrogen Energy, 2024,65:348-361. [34] Dani S, Arya A, Sharma H, et al. Structural and electronic properties of double perovskite ruthenates; A2GdRuO6 (where A = Ba, Sr) [J]. Journal of Alloys and Compounds, 2022,913:165177. [35] 王晓亮.双金属催化剂还原性能研究 [J]. 工业催化, 2023,31(9): 56-59. Wang X L. Investigation on reduction performance of bimetallic catalyst [J]. Industrial Catalysis, 2023,31(9):56-59. [36] Chu P, Wang S, Zhang Y, et al. Component regulation in novel La- Co-O-C composite catalyst for boosted redox reactions and enhanced thermal stability in methane combustion [J]. Journal of Environmental Sciences, 2023,126:459-469. |
[1] |
CHEN Hui-ling, QI Lu, CHEN Jia-bo, XIA Zhi-heng, LI Qian-gang, AO Zi-ding, JIANG Zhao, ZHANG Tong-tong, WANG Hong-chen, LIU Guo-hua. Mechanisms and differences of N2O emission characteristics in typical wastewater treatment processes[J]. CHINA ENVIRONMENTAL SCIENCECE, 2025, 45(2): 718-726. |
|
|
|
|