|
|
Seasonal source analysis of atmospheric volatile organic compounds (VOCs) in Tongchuan high-tech industrial development zone |
ZHANG Li-yuan1, ZHANG Ya-nan1, ZHONG Jia-hao1, GUO Wei2, ZHANG Yue1,2, WANG Jian-yue3, WU Wei-peng1, BO Ya-nan1 |
1. School of Water and Environment, Chang'an University, Xi'an 710064, China; 2. Shaanxi Provincial Academy of Environmental Science, Xi'an 710061, China; 3. Institute of Industrial Hygiene of Ordance Industry, Xi'an 710065, China |
|
|
Abstract This study aims to investigate the VOCs pollution characteristics in the high-tech industrial zone of Tongchuan City, a medium-sized city in the Fenwei Plain, by using online monitoring methods to measure the concentration of environmental VOCs components (a total of 115species) in the atmosphere of the Tongchuan High-tech Industrial Development Zone, thereby obtaining a high-resolution time series and seasonal variation patterns of atmospheric VOCs.The Positive Matrix Factorization (PMF) model was utilized to identify the primary sources of VOCs, and the Maximum Incremental Reactivity (MIR) method was applied to quantify the Ozone Formation Potential (OFP) of VOCs. Furthermore, the Hazard Index (HI) and Lifetime Cancer Risk (LCR) of toxic VOCs were calculated. The findings revealed that during the monitoring period, the average values of φ (TVOCs) in spring, summer, and winter were respectively (69.03 ± 47.48)×10-9, (92.66 ± 37.54)×10-9, and (134.90 ± 74.58)×10-9, with the top three components in each season being consistent (alkanes > alkenes > aromatics). PMF source apportionment results indicated that the sources of atmospheric VOCs in the development zone were primarily from chemical companies, motor vehicles, and combustion emissions (each contributing over 20%). OFP assessment outcomes revealed that OVOCs were the major contributing components in all seasons, with ethanol, acetaldehyde, and ethylene being the primary species. Health risk assessments indicated that the HI in spring, summer, and winter all exceeded acceptable levels (HI > 1), suggesting non-carcinogenic health risks to the exposed population. Acrolein, in particular, had a notably high hazard index, exceeding 1in all seasons. The lifetime cancer risks in spring, summer, and winter were 1.68×10-5, 1.57×10-5, and 8.42×10-5, respectively, indicating a slight carcinogenic risk in all seasons.
|
Received: 01 June 2024
|
|
|
|
|
[1] Jia L, Xu Y, Duan M. Explosive formation of secondary organic aerosol due to aerosol-fog interactions [J]. Science of the Total Environment, 2023,866:161338. [2] Zou Y, Yan X L, Flores R M, et al. Source apportionment and ozone formation mechanism of VOCs considering photochemical loss in Guangzhou, China [J]. Science of the Total Environment, 2023,903: 166191. [3] 生态环境部.2022中国生态环境状况公报 [EB/OL]. https://www.gov.cn/lianbo/bumen/202305/content_6883708.htm. [2023-05-30]. Ministry of Ecology and Environment of the People's Republic of China. 2022 China Ecological Environment Status Bulletin [EB/OL]. https://www.gov.cn/lianbo/bumen/202305/content_6883708.htm.[2023-05-30]. [4] Wu Y, Liu B, Meng H, et al. Changes in source apportioned VOCs during high O3 periods using initial VOC-concentration-dispersion normalized PMF [J]. Science of the Total Environment, 2023,896: 165182. [5] Zhang Q, Sun L, Wei N, et al. The characteristics and source analysis of VOCs emissions at roadside: Assess the impact of ethanol-gasoline implementation [J]. Atmospheric Environment, 2021,263:118670. [6] Zheng H, Kong S, Yan Y, et al. Compositions, sources and health risks of ambient volatile organic compounds (VOCs) at a petrochemical industrial park along the Yangtze River [J]. Science of the Total Environment, 2020,703:135505. [7] Cheng L, Wei W, Guo A, et al. Health risk assessment of hazardous VOCs and its associations with exposure duration and protection measures for coking industry workers [J]. Journal of Cleaner Production, 2022,379:134919. [8] Xing C, Liu C, Lin J, et al. VOCs hyperspectral imaging: A new insight into evaluate emissions and the corresponding health risk from industries [J]. Journal of Hazardous Materials, 2024,461:132573. [9] 孙雪松,张 蕊,王 裕,等.北京市城区秋季O3污染过程VOCs污染特征及反应活性 [J]. 环境科学, 2023,44(2):691-698. Sun X S, Zhang R, Wang Y, et al. Ambient VOCs characteristics and reactivity during O3 pollution in autumn in urban Beijing [J]. Environmental Science, 2023,44(2):691-698. [10] 张 蕊,孙雪松,王 裕,等.北京市城区夏季大气VOCs变化特征及臭氧生成潜势 [J]. 环境科学, 2023,44(4):1954-1961. Zhang R, Sun X S, Wang Y, et al. Variation characteristics and Ozone formation potential of ambient VOCs in urban Beijing in summer [J]. Environmental Science, 2023,44(4):1954-1961. [11] Li Q, Su G, Li C, et al. An investigation into the role of VOCs in SOA and ozone production in Beijing, China [J]. Science of the Total Environment, 2020,720:137536. [12] 张 月,夏士勇,魏成波,等.深圳工业区夏秋季大气挥发性有机物来源研究 [J]. 中国环境科学, 2023,43(8):3857-3866. Zhang Y, Xia S Y, Wei C B, et al. Source apportionment of atmospheric volatile organic compounds in summer and autumn in Shenzhen industrial area [J]. China Environmental Science, 2023,43 (8):3857-3866. [13] 陈 珺,龚道程,廖 彤,等.珠三角大气挥发性有机物的国庆效应及其源解析 [J]. 中国环境科学, 2023,43(7):3265-3280. Chen J, Gong D C, Liao T, et al. National Day effect and source analysis of atmospheric volatile organic compounds in the Pearl River Delta region [J]. China Environmental Science, 2023,43(7):3265- 3280. [14] 王成辉,陈军辉,韩 丽,等.成都市城区大气VOCs季节污染特征及来源解析 [J]. 环境科学,2020,41(9):3951-3960. Wang C H, Chen J H, Han L, et al. Seasonal pollution characteristics and analysis of the sources of atmospheric VOCs in Chengdu rrban area [J]. Environmental Science, 2020,41(9):3951-3960. [15] 李友平,唐 娅,范忠雨,等.成都市大气环境VOCs污染特征及其健康风险评价 [J]. 环境科学, 2018,39(2):576-584. Li Y P, Tang Y, Fan Z Y, et al. Pollution Characteristics and health risk assessment of atmospheric VOCs in Chengdu [J]. Environmental Science, 2018,39(2):576-584. [16] 铜川市大气污染治理专项行动领导小组办公室.铜川市环境空气质量达标规划(2023-2027年) [EB/OL]. http://www.tongchuan.gov.cn/resources/site/1/html/xxgk/zcwj/tcszfwj/bmwj/202307/813645.html. [2023-06-28]. Office of the special action group for air pollution control in Tongchuan City. Tongchuan city ambient air quality compliance plan (2023-2027) [EB/OL]. http://www.tongchuan.gov.cn/resources/site/1/html/xxgk/zcwj/tcszfwj/bmwj/202307/813645.html. [2023-06-28]. [17] 孟祥来,孙 扬,廖婷婷,等.北京市城区夏季VOCs变化特征分析与来源解析 [J]. 环境科学, 2022,43(9):4484-4496. Meng X L, Sun Y, Liao T T, et al. Characteristic analysis and source apportionment of VOCs in urban areas of Beijing in summer [J]. Environmental Science, 2022,43(9):4484-4496. [18] 施雨其,郑凯允,丁玮婷,等.开封市城区冬季大气挥发性有机物污染特征及来源解析 [J]. 环境科学, 2023,44(4):1933-1942. Shi Y Q, Zheng K Y, Ding W T, et al. Pollution characteristics and source apportionment of atmospheric volatile organic compounds in winter in Kaifeng city [J]. Environmental Science, 2023,44(4):1933- 1942. [19] Atkinson R. Atmospheric chemistry of VOCs and NOx [J]. Atmospheric Environment, 2000,34(12):2063-2101. [20] 张 婷,邹 超,和 慧,等.青岛市港区道路路边大气VOCs污染特征与健康风险 [J]. 环境科学学报, 2023,43(6):141-154. Zhang T, Zou C, He H, et al. Pollution characteristics and health risk assessment of ambient volatile organic compounds at roadside in Qingdao port area [J]. Acta Scientiae Circumstantiae, 2023,43(6):141- 154. [21] Li R, Yuan J, Li X, et al. Health risk assessment of volatile organic compounds (VOCs) emitted from landfill working surface via dispersion simulation enhanced by probability analysis [J]. Environmental Pollution, 2023,316:120535. [22] 朱轲欣,刘立忠,刘焕武,等.大连市夏季VOCs化学反应活性及来源 [J]. 环境科学, 2022,43(8):3944-3952. Zhu K X, Liu L Z, Liu H W, et al. Chemical reaction activity and source apportionment of atmospheric VOCs in summer in Dalian [J]. Environmental Science, 2022,43(8):3944-3952. [23] 庞晓蝶,高 博,陈来国,等.湛江市夏季大气挥发性有机物污染特征及来源解析 [J]. 环境科学, 2023,44(5):2461-2471. Pang X D, Gao B, Chen L G, et al. Characteristics and source apportionment of volatile organic compounds in Zhanjiang in summer [J]. Environmental Science, 2023,44(5):2461-2471. [24] 叶 露,邰菁菁,俞华明.汽车工业区大气挥发性有机物(VOCs)变化特征及来源解析 [J]. 环境科学, 2021,42(2):624-633. Ye L, Tai J J, Yu H M. Characteristics and source apportionment of volatile organic compounds (VOCs) in the automobile industrial park of Shanghai [J]. Environmental Science, 2021,42(2):624-633. [25] 高 亢,章 慧,刘梦迪,等.芜湖市大气挥发性有机物污染特征、大气反应活性及源解析 [J]. 环境科学, 2020,41(11):4885-4894. Gao K, Zhang H, Liu M D, et al. Characteristics, atmospheric reactivity and source apportionment of ambient volatile organic compounds in Wuhu [J]. Environmental Science, 2020,41(11):4885- 4894. [26] 景盛翱,叶旭红,高雅琴,等.典型光化学污染期间杭州大气挥发性有机物污染特征及反应活性 [J]. 环境科学, 2020,41(7):3076-3084. Jing S G, Ye X H, Gao Y Q, et al. Characteristics and reactivity of VOCs in Hangzhou during a typical photochemical pollution episode [J]. Environmental Science, 2020,41(7):3076-3084. [27] 曹梦瑶,林煜棋,章炎麟.南京工业区秋季大气挥发性有机物污染特征及来源解析 [J]. 环境科学, 2020,41(6):2565-2576. Cao M Y, Lin Y Q, Zhang Y L. Characteristics and source apportionment of atmospheric VOCs in the Nanjing industrial area in autumn [J]. Environmental Science, 2020,41(6):2565-2576. [28] 张翼翔,尹沙沙,袁明浩,等.郑州市春季大气挥发性有机物污染特征及源解析 [J]. 环境科学, 2019,40(10):4372-4381. Zhang Y X, Yin S S, Yuan M H, et al. Characteristics and source apportionment of ambient VOCs in spring in Zhengzhou [J]. Environmental Science, 2019,40(10):4372-4381. [29] 孔翠丽,吴雨彤,顾 瑶,等.基于化学损耗矫正的青岛胶州市环境VOCs来源解析 [J]. 环境科学, 2023,44(12):6551-6563. Kong C L, Wu Y T, Gu Y, et al. Source apportionment of ambient VOCs in Qingdao based on photochemical loss correction [J]. Environmental Science, 2023,44(12):6551-6563. [30] Vestenius M, Hopke P K, Lehtipalo K, et al. Assessing volatile organic compound sources in a boreal forest using positive matrix factorization (PMF) [J]. Atmospheric Environment, 2021,259:118503. [31] Liu Y, Shao M, Fu L, et al. Source profiles of volatile organic compounds (VOCs) measured in China: Part I [J]. Atmospheric Environment, 2008,42(25):6247-6260. [32] Song C, Liu Y, Sun L, et al. Emissions of volatile organic compounds (VOCs) from gasoline- and liquified natural gas (LNG)-fueled vehicles in tunnel studies [J]. Atmospheric Environment, 2020,234: 117626. [33] 连世泽,邓萌杰,陈 楠,等.黄冈市大气挥发性有机物污染特征、来源及对臭氧生成的影响 [J]. 环境科学, 2023,44(10):5410-5417. Lian S Z, Deng M J, Chen N, et al. Characteristics, sources, and contributions to ozone formation of ambient volatile organic compounds in Huanggang, China [J]. Environmental Science, 2023, 44(10):5410-5417. [34] 胡 崑,王 鸣,郑 军,等.基于PMF量化工业排放对大气挥发性有机物(VOCs)的影响:以南京市江北工业区为例 [J]. 环境科学, 2018, 39(2):493-501. Hu K, Wang M, Zheng J, et al. Quantification of the influence of industrial emissions on volatile organic compounds (VOCs) using PMF model: a case study of Jiangbei industrial zone in Nanjing [J]. Environmental Science, 2018,39(2):493-501. [35] 胡 崑,王 鸣,王红丽,等.基于PMF和源示踪物比例法的大气羰基化合物来源解析:以南京市观测为例 [J]. 环境科学, 2021,42(1): 45-54. Hu K, Wang M, Wang H L et al. Source apportionment of ambient carbonyl compounds based on a PMF and source tracer ratio method: a case based on observations in Nanjing [J]. Environmental Science, 2021,42(1):45-54. [36] 黄海滨,成海容,胡 柯,等.武汉夏季光化学过程二羰基的污染特征及来源 [J]. 中国环境科学, 2023,43(10):5114-5122. Huang H B, Cheng H R, Hu K, et al. Characteristics and sources of dicarbonyl compounds during summer photochemical pollution episodes in Wuhan [J]. China Environmental Science, 2023,43(10): 5114-5122. [37] Wang B, Liu Z, Li Z, et al. Characteristics, chemical transformation and source apportionment of volatile organic compounds (VOCs) during wintertime at a suburban site in a provincial capital city, east China [J]. Atmospheric Environment, 2023,298:119621. [38] 胡 君,王淑兰,吴亚君,等.北京怀柔O3污染过程初始VOCs浓度特征及来源分析 [J]. 环境科学研究, 2019,32(5):766-775. Hu J, Wang S L, Wu Y J, et al. Characteristics and source analysis of initial mixing ratio of atmospheric VOCs during an ozone episode in Huairou, Beijing [J]. Research of Environmental Sciences, 2019, 32(5):766-775. [39] Zeng X, Han M, Ren G, et al. A comprehensive investigation on source apportionment and multi-directional regional transport of volatile organic compounds and ozone in urban Zhengzhou [J]. Chemosphere, 2023,334:139001. [40] 冯 旸,刘锐源,刘雷璐,等.广州典型印刷企业VOCs排放特征及环境影响和健康风险评价 [J]. 中国环境科学, 2020,40(9):3791-3800. Feng Y, Liu R Y, Liu L L, et al. VOCs emission characteristics, environmental impact and health risk assessment of typical printing enterprises in Guangzhou [J]. China Environmental Science, 2020, 40(9):3791-3800. [41] Yang Y, Ji D, Sun J, et al. Ambient volatile organic compounds in a suburban site between Beijing and Tianjin: Concentration levels, source apportionment and health risk assessment [J]. Science of the Total Environment, 2019,695:133889. [42] 王 洁,姚 震,王敏燕,等.北京市工业园区VOCs污染特征及健康风险评估案例:高新技术产业的环境影响 [J]. 环境科学, 2024, 45(4):2019-2027. Wang J, Yao Z, Wang M Y, et al. VOCs pollution characteristics and health risk assessment in typical industrial parks in Beijing: Environmental impact of high and new technology industries [J]. Environmental Science, 2024,45(4):2019-2027. [43] 李 陵,张 丹,胡 伟,等.西南地区大型综合工业区和周边区域大气VOCs污染特征及健康风险评估 [J]. 环境科学, 2022,43(1): 102-112. Li L, Zhang D, Hu W, et al. Atmospheric VOCs pollution characteristics and health risk assessment of large scale integrated industrial area and surrounding areas in Southwest China [J]. Environmental Science, 2022,43(1):102-112. [44] 钱益斌,钟昌琴,杨安富,等.海南某化工园区大气VOCs组成、来源及健康风险 [J]. 环境科学与技术, 2020,43(5):115-123. Qian Y B, Zhong C Q, Yang A F, et al. Characteristics, source apportionment and health risk assessment of volatile organic compounds in the atmosphere of a chem ical industrial park in Hainan [J]. Environmental Science & Technology, 2020,43(5):115-123. |
|
|
|